ﻻ يوجد ملخص باللغة العربية
The AKLT spin chain is the prototypical example of a frustration-free quantum spin system with a spectral gap above its ground state. Affleck, Kennedy, Lieb, and Tasaki also conjectured that the two-dimensional version of their model on the hexagonal lattice exhibits a spectral gap. In this paper, we introduce a family of variants of the two-dimensional AKLT model depending on a positive integer $n$, which is defined by decorating the edges of the hexagonal lattice with one-dimensional AKLT spin chains of length $n$. We prove that these decorated models are gapped for all $n geq 3$.
In 1987, Affleck, Kennedy, Lieb, and Tasaki introduced the AKLT spin chain and proved that it has a spectral gap above the ground state. Their concurrent conjecture that the two-dimensional AKLT model on the hexagonal lattice is also gapped remains o
The 1D AKLT model is a paradigm of antiferromagnetism, and its ground state exhibits symmetry-protected topological order. On a 2D lattice, the AKLT model has recently gained attention because it too displays symmetry-protected topological order, and
This thesis presents an introduction to the class of Richardson-Gaudin integrable models, with special focus on the Bethe ansatz wave function, and investigates ways of applying the properties of Richardson-Gaudin models both in and out of integrabil
We prove the hydrodynamic limit for the symmetric exclusion process with long jumps given by a mean zero probability transition rate with infinite variance and in contact with infinitely many reservoirs with density $alpha$ at the left of the system
The $S=1$ Affleck-Kennedy-Lieb-Tasaki (AKLT) quantum spin chain was the first rigorous example of an isotropic spin system in the Haldane phase. The conjecture that the $S=3/2$ AKLT model on the hexagonal lattice is also in a gapped phase has remaine