ترغب بنشر مسار تعليمي؟ اضغط هنا

Richardson-Gaudin models and broken integrability

84   0   0.0 ( 0 )
 نشر من قبل Pieter W. Claeys
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pieter W. Claeys




اسأل ChatGPT حول البحث

This thesis presents an introduction to the class of Richardson-Gaudin integrable models, with special focus on the Bethe ansatz wave function, and investigates ways of applying the properties of Richardson-Gaudin models both in and out of integrability. A framework is outlined for the numerical and theoretical treatment of these systems, exposing a duality allowing the Bethe equations to be solved numerically. This is extended to the calculation of inner products and correlation functions. Using this framework, the influence of particle exchange on the Bethe ansatz is discussed, after which it is shown how the Bethe ansatz is able to accurately model wave functions of non-integrable models in two different settings. First, a variational approach is outlined for stationary models where integrability-breaking perturbations are explicitly introduced. Second, an alternative way of breaking integrability is through the introduction of dynamics and periodic driving, where it is shown how integrability can be used to model the resulting Floquet many-body resonances. Throughout this work, it is shown how the clear-cut structure and relatively large freedom in Richardson-Gaudin models makes them ideal for an investigation of the general principles of integrability, as well as being a perfect testing ground for the development of new quantum many-body techniques beyond integrability.

قيم البحث

اقرأ أيضاً

99 - Kang Lu 2020
We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with p eriodic and regular quasi-periodic boundary conditions.
We present a variational method for approximating the ground state of spin models close to (Richardson-Gaudin) integrability. This is done by variationally optimizing eigenstates of integrable Richardson-Gaudin models, where the toolbox of integrabil ity allows for an efficient evaluation and minimization of the energy functional. The method is shown to return exact results for integrable models and improve substantially on perturbation theory for models close to integrability. For large integrability-breaking interactions, it is shown how (avoided) level crossings necessitate the use of excited states of integrable Hamiltonians in order to accurately describe the ground states of general non-integrable models.
We establish the most general class of spin-1/2 integrable Richardson-Gaudin models including an arbitrary magnetic field, returning a fully anisotropic (XYZ) model. The restriction to spin-1/2 relaxes the usual integrability constraints, allowing fo r a general solution where the couplings between spins lack the usual antisymmetric properties of Richardson-Gaudin models. The full set of conserved charges are constructed explicitly and shown to satisfy a set of quadratic equations, allowing for the numerical treatment of a fully anisotropic central spin in an external magnetic field. While this approach does not provide expressions for the exact eigenstates, it allows their eigenvalues to be obtained, and expectation values of local observables can then be calculated from the Hellmann-Feynman theorem.
In specific open systems with collective dissipation the Liouvillian can be mapped to a non-Hermitian Hamiltonian. We here consider such a system where the Liouvillian is mapped to an XXZ Richardson-Gaudin integrable model and detail its exact Bethe ansatz solution. While no longer Hermitian, the Hamiltonian is pseudo-Hermitian/PT-symmetric, and as the strength of the coupling to the environment is increased the spectrum in a fixed symmetry sector changes from a broken pseudo-Hermitian phase with complex conjugate eigenvalues to a pseudo-Hermitian phase with real eigenvalues, passing through a series of exceptional points and associated dissipative quantum phase transitions. The homogeneous limit supports a nontrivial steady state, and away from this limit this state gives rise to a slow logarithmic growth of the decay rate (spectral gap) with system size. Using the exact solution, it is furthermore shown how at large coupling strengths the ratio of the imaginary to the real part of the eigenvalues becomes approximately quantized in the remaining symmetry sectors.
Pairing correlations in the even-even A=102-130 Sn isotopes are discussed, based on the Richardson-Gaudin variables in an exact Woods-Saxon plus reduced BCS pairing framework. The integrability of the model sheds light on the pairing correlations, in particular on the previously reported sub-shell structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا