ﻻ يوجد ملخص باللغة العربية
This thesis presents an introduction to the class of Richardson-Gaudin integrable models, with special focus on the Bethe ansatz wave function, and investigates ways of applying the properties of Richardson-Gaudin models both in and out of integrability. A framework is outlined for the numerical and theoretical treatment of these systems, exposing a duality allowing the Bethe equations to be solved numerically. This is extended to the calculation of inner products and correlation functions. Using this framework, the influence of particle exchange on the Bethe ansatz is discussed, after which it is shown how the Bethe ansatz is able to accurately model wave functions of non-integrable models in two different settings. First, a variational approach is outlined for stationary models where integrability-breaking perturbations are explicitly introduced. Second, an alternative way of breaking integrability is through the introduction of dynamics and periodic driving, where it is shown how integrability can be used to model the resulting Floquet many-body resonances. Throughout this work, it is shown how the clear-cut structure and relatively large freedom in Richardson-Gaudin models makes them ideal for an investigation of the general principles of integrability, as well as being a perfect testing ground for the development of new quantum many-body techniques beyond integrability.
We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with p
We present a variational method for approximating the ground state of spin models close to (Richardson-Gaudin) integrability. This is done by variationally optimizing eigenstates of integrable Richardson-Gaudin models, where the toolbox of integrabil
We establish the most general class of spin-1/2 integrable Richardson-Gaudin models including an arbitrary magnetic field, returning a fully anisotropic (XYZ) model. The restriction to spin-1/2 relaxes the usual integrability constraints, allowing fo
In specific open systems with collective dissipation the Liouvillian can be mapped to a non-Hermitian Hamiltonian. We here consider such a system where the Liouvillian is mapped to an XXZ Richardson-Gaudin integrable model and detail its exact Bethe
Pairing correlations in the even-even A=102-130 Sn isotopes are discussed, based on the Richardson-Gaudin variables in an exact Woods-Saxon plus reduced BCS pairing framework. The integrability of the model sheds light on the pairing correlations, in