ترغب بنشر مسار تعليمي؟ اضغط هنا

The AKLT model on a hexagonal chain is gapped

79   0   0.0 ( 0 )
 نشر من قبل Marius Lemm
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1987, Affleck, Kennedy, Lieb, and Tasaki introduced the AKLT spin chain and proved that it has a spectral gap above the ground state. Their concurrent conjecture that the two-dimensional AKLT model on the hexagonal lattice is also gapped remains open. In this paper, we show that the AKLT Hamiltonian restricted to an arbitrarily long chain of hexagons is gapped. The argument is based on explicitly verifying a finite-size criterion which is tailor-made for the system at hand. We also discuss generalizations of the method to the full hexagonal lattice.

قيم البحث

اقرأ أيضاً

The 1D AKLT model is a paradigm of antiferromagnetism, and its ground state exhibits symmetry-protected topological order. On a 2D lattice, the AKLT model has recently gained attention because it too displays symmetry-protected topological order, and its ground state can act as a resource state for measurement-based quantum computation. While the 1D model has been shown to be gapped, it remains an open problem to prove the existence of a spectral gap on the 2D square lattice, which would guarantee the robustness of the resource state. Recently, it has been shown that one can deduce this spectral gap by analyzing the models boundary theory via a tensor network representation of the ground state. In this work, we express the boundary state of the 2D AKLT model in terms of a classical loop model, where loops, vertices, and crossings are each given a weight. We use numerical techniques to sample configurations of loops and subsequently evaluate the boundary state and boundary Hamiltonian on a square lattice. As a result, we evidence a spectral gap in the square lattice AKLT model. In addition, by varying the weights of the loops, vertices, and crossings, we indicate the presence of three distinct phases exhibited by the classical loop model.
The $S=1$ Affleck-Kennedy-Lieb-Tasaki (AKLT) quantum spin chain was the first rigorous example of an isotropic spin system in the Haldane phase. The conjecture that the $S=3/2$ AKLT model on the hexagonal lattice is also in a gapped phase has remaine d open, despite being a fundamental problem of ongoing relevance to condensed-matter physics and quantum information theory. Here we confirm this conjecture by demonstrating the size-independent lower bound $Delta >0.006$ on the spectral gap of the hexagonal model with periodic boundary conditions in the thermodynamic limit. Our approach consists of two steps combining mathematical physics and high-precision computational physics. We first prove a mathematical finite-size criterion which gives an analytical, size-independent bound on the spectral gap if the gap of a particular cut-out subsystem of 36 spins exceeds a certain threshold value. Then we verify the finite-size criterion numerically by performing state-of-the-art DMRG calculations on the subsystem.
The AKLT spin chain is the prototypical example of a frustration-free quantum spin system with a spectral gap above its ground state. Affleck, Kennedy, Lieb, and Tasaki also conjectured that the two-dimensional version of their model on the hexagonal lattice exhibits a spectral gap. In this paper, we introduce a family of variants of the two-dimensional AKLT model depending on a positive integer $n$, which is defined by decorating the edges of the hexagonal lattice with one-dimensional AKLT spin chains of length $n$. We prove that these decorated models are gapped for all $n geq 3$.
The entanglement spectrum (ES) provides a barometer of quantum entanglement and encodes physical information beyond that contained in the entanglement entropy. In this paper, we explore the ES of stabilizer codes, which furnish exactly solvable model s for a plethora of gapped quantum phases of matter. Studying the ES for stabilizer Hamiltonians in the presence of arbitrary weak local perturbations thus allows us to develop a general framework within which the entanglement features of gapped topological phases can be computed and contrasted. In particular, we study models harboring fracton order, both type-I and type-II, and compare the resulting ES with that of both conventional topological order and of (strong) subsystem symmetry protected topological (SSPT) states. We find that non-local surface stabilizers (NLSS), a set of symmetries of the Hamiltonian which form on the boundary of the entanglement cut, act as purveyors of universal non-local features appearing in the entanglement spectrum. While in conventional topological orders and fracton orders, the NLSS retain a form of topological invariance with respect to the entanglement cut, subsystem symmetric systems---fracton and SSPT phases---additionally show a non-trivial geometric dependence on the entanglement cut, corresponding to the subsystem symmetry. This sheds further light on the interplay between geometric and topological effects in fracton phases of matter and demonstrates that strong SSPT phases harbour a measure of quasi-local entanglement beyond that encountered in conventional SPT phases. We further show that a version of the edge-entanglement correspondence, established earlier for gapped two-dimensional topological phases, also holds for gapped three-dimensional fracton models.
The quantum complexity of a unitary operator measures the difficulty of its construction from a set of elementary quantum gates. While the notion of quantum complexity was first introduced as a quantum generalization of the classical computational co mplexity, it has since been argued to hold a fundamental significance in its own right, as a physical quantity analogous to the thermodynamic entropy. In this paper, we present a unified perspective on various notions of quantum complexity, viewed as functions on the space of unitary operators. One striking feature of these functions is that they can exhibit non-smooth and even fractal behaviour. We use ideas from Diophantine approximation theory and sub-Riemannian geometry to rigorously quantify this lack of smoothness. Implications for the physical meaning of quantum complexity are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا