ﻻ يوجد ملخص باللغة العربية
We investigate the problem of recovering jointly $r$-rank and $s$-bisparse matrices from as few linear measurements as possible, considering arbitrary measurements as well as rank-one measurements. In both cases, we show that $m asymp r s ln(en/s)$ measurements make the recovery possible in theory, meaning via a nonpractical algorithm. In case of arbitrary measurements, we investigate the possibility of achieving practical recovery via an iterative-hard-thresholding algorithm when $m asymp r s^gamma ln(en/s)$ for some exponent $gamma > 0$. We show that this is feasible for $gamma = 2$, and that the proposed analysis cannot cover the case $gamma leq 1$. The precise value of the optimal exponent $gamma in [1,2]$ is the object of a question, raised but unresolved in this paper, about head projections for the jointly low-rank and bisparse structure. Some related questions are partially answered in passing. For rank-one measurements, we suggest on arcane grounds an iterative-hard-thresholding algorithm modified to exploit the nonstandard restricted isometry property obeyed by this type of measurements.
This note studies the worst-case recovery error of low-rank and bisparse matrices as a function of the number of one-bit measurements used to acquire them. First, by way of the concept of consistency width, precise estimates are given on how fast the
Low-rank tensor recovery problems have been widely studied in many applications of signal processing and machine learning. Tucker decomposition is known as one of the most popular decompositions in the tensor framework. In recent years, researchers h
Information is extracted from large and sparse data sets organized as 3-mode tensors. Two methods are described, based on best rank-(2,2,2) and rank-(2,2,1) approximation of the tensor. The first method can be considered as a generalization of spectr
This paper introduces new solvers for the computation of low-rank approximate solutions to large-scale linear problems, with a particular focus on the regularization of linear inverse problems. Although Krylov methods incorporating explicit projectio
We describe a simple, black-box compression format for tensors with a multiscale structure. By representing the tensor as a sum of compressed tensors defined on increasingly coarse grids, we capture low-rank structures on each grid-scale, and we show