ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a new algorithm for recovery of low-rank matrices from compressed linear measurements. The underlying idea of this algorithm is to closely approximate the rank function with a smooth function of singular values, and then minimize the resulting approximation subject to the linear constraints. The accuracy of the approximation is controlled via a scaling parameter $delta$, where a smaller $delta$ corresponds to a more accurate fitting. The consequent optimization problem for any finite $delta$ is nonconvex. Therefore, in order to decrease the risk of ending up in local minima, a series of optimizations is performed, starting with optimizing a rough approximation (a large $delta$) and followed by successively optimizing finer approximations of the rank with smaller $delta$s. To solve the optimization problem for any $delta > 0$, it is converted to a new program in which the cost is a function of two auxiliary positive semidefinete variables. The paper shows that this new program is concave and applies a majorize-minimize technique to solve it which, in turn, leads to a few convex optimization iterations. This optimization scheme is also equivalent to a reweighted Nuclear Norm Minimization (NNM), where weighting update depends on the used approximating function. For any $delta > 0$, we derive a necessary and sufficient condition for the exact recovery which are weaker than those corresponding to NNM. On the numerical side, the proposed algorithm is compared to NNM and a reweighted NNM in solving affine rank minimization and matrix completion problems showing its considerable and consistent superiority in terms of success rate, especially, when the number of measurements decreases toward the lower-bound for the unique representation.
In this paper, the problem of matrix rank minimization under affine constraints is addressed. The state-of-the-art algorithms can recover matrices with a rank much less than what is sufficient for the uniqueness of the solution of this optimization p
Quaternion matrices are employed successfully in many color image processing applications. In particular, a pure quaternion matrix can be used to represent red, green and blue channels of color images. A low-rank approximation for a pure quaternion m
In this work, we propose an alternating low-rank decomposition (ALRD) approach and novel subspace algorithms for direction-of-arrival (DOA) estimation. In the ALRD scheme, the decomposition matrix for rank reduction is composed of a set of basis vect
A distance matrix $A in mathbb R^{n times m}$ represents all pairwise distances, $A_{ij}=mathrm{d}(x_i,y_j)$, between two point sets $x_1,...,x_n$ and $y_1,...,y_m$ in an arbitrary metric space $(mathcal Z, mathrm{d})$. Such matrices arise in various
We tackle the problem of recovering a complex signal $boldsymbol xinmathbb{C}^n$ from quadratic measurements of the form $y_i=boldsymbol x^*boldsymbol A_iboldsymbol x$, where $boldsymbol A_i$ is a full-rank, complex random measurement matrix whose en