ﻻ يوجد ملخص باللغة العربية
We study the evolution of kinetic and magnetic energy spectra in magnetohydrodynamic flows in the presence of strong cross helicity. For forced turbulence, we find weak inverse transfer of kinetic energy toward the smallest wavenumber. This is plausibly explained by the finiteness of scale separation between the injection wavenumber and the smallest wavenumber of the domain, which here is a factor of 15. In the decaying case, there is a slight increase at the smallest wavenumber, which is probably explained by the dominance of kinetic energy over magnetic energy at the smallest wavenumbers. Within a range of wavenumbers covering almost an order of magnitude the decay is purely exponential, which is argued to be a consequence of a suppression of nonlinearity due to the presence of strong cross helicity.
Hydromagnetic turbulence produced during phase transitions in the early universe can be a powerful source of stochastic gravitational waves (GWs). GWs can be modelled by the linearised spatial part of the Einstein equations sourced by the Reynolds an
Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, a
The previously reported non-equilibrium dissipation law is investigated in turbulent flows generated by various regular and fractal square grids. The flows are documented in terms of various turbulent profiles which reveal their differences. In spite
We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient $C_{varepsilon}$ scales as $C_{varepsilon} sim Re_{M}^{m}/Re_{ell}^{n}$ with $mapprox 1 approx n$ ($Re_M$ and $Re_{ell}$ are global/inlet and local Reynol
We present results from an ensemble of 50 runs of two-dimensional hydrodynamic turbulence with spatial resolution of 2048^2 grid points, and from an ensemble of 10 runs with 4096^2 grid points. All runs in each ensemble have random initial conditions