ﻻ يوجد ملخص باللغة العربية
We present results from an ensemble of 50 runs of two-dimensional hydrodynamic turbulence with spatial resolution of 2048^2 grid points, and from an ensemble of 10 runs with 4096^2 grid points. All runs in each ensemble have random initial conditions with same initial integral scale, energy, enstrophy, and Reynolds number. When both ensemble- and time-averaged, inverse energy cascade behavior is observed, even in the absence of external mechanical forcing: the energy spectrum at scales larger than the characteristic scale of the flow follows a k^(-5/3) law, with negative flux, together with a k^(-3) law at smaller scales, and a positive flux of enstrophy. The source of energy for this behavior comes from the modal energy around the energy containing scale at t=0. The results shed some light into connections between decaying and forced turbulence, and into recent controversies in experimental studies of two-dimensional and magnetohydrodynamic turbulent flows.
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter $Lambda$ to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DN
The low wavenumber expansion of the energy spectrum takes the well known form: $ E(k,t) = E_2(t) k^2 + E_4(t) k^4 + ... $, where the coefficients are weighted integrals against the correlation function $C(r,t)$. We show that expressing $E(k,t)$ in te
We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient $C_{varepsilon}$ scales as $C_{varepsilon} sim Re_{M}^{m}/Re_{ell}^{n}$ with $mapprox 1 approx n$ ($Re_M$ and $Re_{ell}$ are global/inlet and local Reynol
We report on the observation of surface gravity wave turbulence at scales larger than the forcing ones in a large basin. In addition to the downscale transfer usually reported in gravity wave turbulence, an upscale transfer is observed, interpreted a
In this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high resolution direct numerical simulation with $Re_{lambda}=400$. Both the energy dissipation rat