ترغب بنشر مسار تعليمي؟ اضغط هنا

The non-equilibrium region of grid-generated decaying turbulence

190   0   0.0 ( 0 )
 نشر من قبل Pedro Valente
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The previously reported non-equilibrium dissipation law is investigated in turbulent flows generated by various regular and fractal square grids. The flows are documented in terms of various turbulent profiles which reveal their differences. In spite of significant inhomogeneity and anisotropy differences, the new non-equilibrium dissipation law is observed in all these flows. Various transverse and longitudinal integral scales are measured and used to define the dissipation coefficient $C_{varepsilon}$. It is found that the new non-equilibrium dissipation law is not an artefact of a particular choice of the integral scale and that the usual equilibrium dissipation law can actually coexist with the non-equilibrium law in different regions of the same flow.



قيم البحث

اقرأ أيضاً

We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient $C_{varepsilon}$ scales as $C_{varepsilon} sim Re_{M}^{m}/Re_{ell}^{n}$ with $mapprox 1 approx n$ ($Re_M$ and $Re_{ell}$ are global/inlet and local Reynol ds numbers respectively) by measuring the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production and transport in the lee of a square-mesh grid and compare with a region of equilibrium turbulence (i.e. where $C_{varepsilon}approx mathrm{constant}$). These are the main terms of the inhomogeneous, anisotropic version of the von K{a}rm{a}n-Howarth-Monin equation. It is shown in the grid-generated turbulence studied here that, even in the presence of non-negligible turbulence production and transport, production and transport are large-scale phenomena that do not contribute to the scale-by-scale balance for scales smaller than about a third of the integral-length scale, $ell$, and therefore do not affect the energy transfer to the small-scales. In both the non-equilibrium and the equilibrium decay regions, the peak of the scale-by-scale energy transfer scales as $(overline{u^2})^{3/2}/ell$ ($overline{u^2}$ is the variance of the longitudinal fluctuating velocity). In the non-equilibrium case this scaling implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the further downstream equilibrium region where $C_{varepsilon} approx mathrm{constant}$ even though $Re_{ell}$ is lower.
We use two related non-stationarity functions as measures of the degree of scale-by-scale non-equilibrium in homogeneous isotropic turbulence. The values of these functions indicate significant non-equilibrium at the upper end of the inertial range. Wind tunnel data confirm Lundgrens (2002, 2003) prediction that the two-point separation $r$ where the second and third order structure functions are closest to their Kolmogorov scalings is proportional to the Taylor length scale $lambda$, and that both structure functions increasingly distance themselves from their Kolmogorov equilibrium form as $r$ increases away from $lambda$ throughout the inertial range. With the upper end of the inertial range in non-equilibrium irrespective of Reynolds number, it is not possible to justify the Taylor-Kolmogorov turbulence dissipation scaling on the basis of Kolmogorov equilibrium.
We focus in this paper on the effect of the resolution of Direct Numerical Simulations (DNS) on the spatio-temporal development of the turbulence downstream of a single square grid. The aims of this study are to validate our numerical approach by com paring experimental and numerical one-point statistics downstream of a single square grid and then investigate how the resolution is impacting the dynamics of the flow. In particular, using the Q-R diagram, we focus on the interaction between the strain-rate and rotation tensors, the symmetric and skew-symmetric parts of the velocity gradient tensor respectively. We first show good agreement between our simulations and hot-wire experiment for one-point statistics on the centreline of the single square grid. Then, by analysing the shape of the Q-R diagram for various streamwise locations, we evaluate the ability of under-resolved DNS to capture the main features of the turbulence downstream of the single square grid.
The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.
213 - Axel Brandenburg 2019
We study the evolution of kinetic and magnetic energy spectra in magnetohydrodynamic flows in the presence of strong cross helicity. For forced turbulence, we find weak inverse transfer of kinetic energy toward the smallest wavenumber. This is plausi bly explained by the finiteness of scale separation between the injection wavenumber and the smallest wavenumber of the domain, which here is a factor of 15. In the decaying case, there is a slight increase at the smallest wavenumber, which is probably explained by the dominance of kinetic energy over magnetic energy at the smallest wavenumbers. Within a range of wavenumbers covering almost an order of magnitude the decay is purely exponential, which is argued to be a consequence of a suppression of nonlinearity due to the presence of strong cross helicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا