ﻻ يوجد ملخص باللغة العربية
Many existing translation averaging algorithms are either sensitive to disparate camera baselines and have to rely on extensive preprocessing to improve the observed Epipolar Geometry graph, or if they are robust against disparate camera baselines, require complicated optimization to minimize the highly nonlinear angular error objective. In this paper, we carefully design a simple yet effective bilinear objective function, introducing a variable to perform the requisite normalization. The objective function enjoys the baseline-insensitive property of the angular error and yet is amenable to simple and efficient optimization by block coordinate descent, with good empirical performance. A rotation-assisted Iterative Reweighted Least Squares scheme is further put forth to help deal with outliers. We also contribute towards a better understanding of the behavior of two recent convex algorithms, LUD and Shapefit/kick, clarifying the underlying subtle difference that leads to the performance gap. Finally, we demonstrate that our algorithm achieves overall superior accuracies in benchmark dataset compared to state-of-theart methods, and is also several times faster.
This paper presents a detailed analysis of the applicability and benefits of baseline dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array (SKA). We demonstrate that BDA does not affect the informatio
Xova is a software package that implements baseline-dependent time and channel averaging on Measurement Set data. The uv-samples along a baseline track are aggregated into a bin until a specified decorrelation tolerance is exceeded. The degree of dec
We address rotation averaging (RA) and its application to real-world 3D reconstruction. Local optimisation based approaches are the de facto choice, though they only guarantee a local optimum. Global optimisers ensure global optimality in low noise c
Global methods to Structure from Motion have gained popularity in recent years. A significant drawback of global methods is their sensitivity to collinear camera settings. In this paper, we introduce an analysis and algorithms for averaging bifocal t
Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps. In this paper, we focus on speeding-