ﻻ يوجد ملخص باللغة العربية
Existing image-to-image translation (I2IT) methods are either constrained to low-resolution images or long inference time due to their heavy computational burden on the convolution of high-resolution feature maps. In this paper, we focus on speeding-up the high-resolution photorealistic I2IT tasks based on closed-form Laplacian pyramid decomposition and reconstruction. Specifically, we reveal that the attribute transformations, such as illumination and color manipulation, relate more to the low-frequency component, while the content details can be adaptively refined on high-frequency components. We consequently propose a Laplacian Pyramid Translation Network (LPTN) to simultaneously perform these two tasks, where we design a lightweight network for translating the low-frequency component with reduced resolution and a progressive masking strategy to efficiently refine the high-frequency ones. Our model avoids most of the heavy computation consumed by processing high-resolution feature maps and faithfully preserves the image details. Extensive experimental results on various tasks demonstrate that the proposed method can translate 4K images in real-time using one normal GPU while achieving comparable transformation performance against existing methods. Datasets and codes are available: https://github.com/csjliang/LPTN.
Despite significant advances in image-to-image (I2I) translation with Generative Adversarial Networks (GANs) have been made, it remains challenging to effectively translate an image to a set of diverse images in multiple target domains using a pair o
We present a method to improve the visual realism of low-quality, synthetic images, e.g. OpenGL renderings. Training an unpaired synthetic-to-real translation network in image space is severely under-constrained and produces visible artifacts. Instea
We present the full-resolution correspondence learning for cross-domain images, which aids image translation. We adopt a hierarchical strategy that uses the correspondence from coarse level to guide the fine levels. At each hierarchy, the corresponde
We present a novel algorithm for transferring artistic styles of semantically meaningful local regions of an image onto local regions of a target video while preserving its photorealism. Local regions may be selected either fully automatically from a
Cross-domain image-to-image translation should satisfy two requirements: (1) preserve the information that is common to both domains, and (2) generate convincing images covering variations that appear in the target domain. This is challenging, especi