ﻻ يوجد ملخص باللغة العربية
Global methods to Structure from Motion have gained popularity in recent years. A significant drawback of global methods is their sensitivity to collinear camera settings. In this paper, we introduce an analysis and algorithms for averaging bifocal tensors (essential or fundamental matrices) when either subsets or all of the camera centers are collinear. We provide a complete spectral characterization of bifocal tensors in collinear scenarios and further propose two averaging algorithms. The first algorithm uses rank constrained minimization to recover camera matrices in fully collinear settings. The second algorithm enriches the set of possibly mixed collinear and non-collinear cameras with additional, virtual cameras, which are placed in general position, enabling the application of existing averaging methods to the enriched set of bifocal tensors. Our algorithms are shown to achieve state of the art results on various benchmarks that include autonomous car datasets and unordered image collections in both calibrated and unclibrated settings.
Essential matrix averaging, i.e., the task of recovering camera locations and orientations in calibrated, multiview settings, is a first step in global approaches to Euclidean structure from motion. A common approach to essential matrix averaging is
We review the most recent RANSAC-like hypothesize-and-verify robust estimators. The best performing ones are combined to create a state-of-the-art version of the Universal Sample Consensus (USAC) algorithm. A recent objective is to implement a modula
Accurate estimation of camera matrices is an important step in structure from motion algorithms. In this paper we introduce a novel rank constraint on collections of fundamental matrices in multi-view settings. We show that in general, with the selec
Euclidean distance matrices (EDM) are matrices of squared distances between points. The definition is deceivingly simple: thanks to their many useful properties they have found applications in psychometrics, crystallography, machine learning, wireles
We address rotation averaging (RA) and its application to real-world 3D reconstruction. Local optimisation based approaches are the de facto choice, though they only guarantee a local optimum. Global optimisers ensure global optimality in low noise c