ترغب بنشر مسار تعليمي؟ اضغط هنا

Baseline Dependent Averaging in Radio Interferometry

140   0   0.0 ( 0 )
 نشر من قبل Stefan J. Wijnholds
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a detailed analysis of the applicability and benefits of baseline dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array (SKA). We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80%.

قيم البحث

اقرأ أيضاً

Xova is a software package that implements baseline-dependent time and channel averaging on Measurement Set data. The uv-samples along a baseline track are aggregated into a bin until a specified decorrelation tolerance is exceeded. The degree of dec orrelation in the bin correspondingly determines the amount of channel and timeslot averaging that is suitable for samples in the bin. This necessarily implies that the number of channels and timeslots varies per bin and the output data loses the rectilinear input shape of the input data.
Traditional radio interferometric correlators produce regular-gridded samples of the true $uv$-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-g ridded samples in the $uv$-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as decorrelation in the $uv$-space, which is equivalent in the source domain to smearing. This work discusses and implements a regular-gridded sampling scheme in the $uv$-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space i.e. the time-frequency interval becomes baseline-dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping and outer field-of-interest suppression are achieved.
Space very long baseline interferometry (VLBI) has unique applications in high-resolution imaging of fine structure of astronomical objects and high-precision astrometry due to the key long space-Earth or space-space baselines beyond the Earths diame ter. China has been actively involved in the development of space VLBI in recent years. This review briefly summarizes Chinas research progress in space VLBI and the future development plan.
We report on a very long baseline interferometry (VLBI) experiment on giant radio pulses (GPs) from the Crab pulsar in the radio 1.4 to 1.7 GHz range to demonstrate a VLBI technique for searching for fast radio bursts (FRBs). We carried out the exper iment on 26 July 2014 using the Kashima 34 m and Usuda 64 m radio telescopes of the Japanese VLBI Network (JVN) with a baseline of about 200 km. During the approximately 1 h observation, we could detect 35 GPs by high-time-resolution VLBI. Moreover, we determined the dispersion measure (DM) to be 56.7585 +/- 0.0025 on the basis of the mean DM of the 35 GPs detected by VLBI. We confirmed that the sensitivity of a detection of GPs using our technique is superior to that of a single-dish mode detection using the same telescope.
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these extremely sensitive stations with other radio telescopes, and in SKA2 by realising a distributed configuration providing baselines up to thousands of km, merging it with existing VLBI networks. The motivation for and the possible realization of SKA-VLBI is described in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا