ﻻ يوجد ملخص باللغة العربية
A multitude of large-scale silicon photonic systems based on ring resonators have been envisioned for applications ranging from biomedical sensing to quantum computing and machine learning. Yet, due to the lack of a scalable solution for controlling ring resonators, practical demonstrations have been limited to systems with only a few rings. Here, we demonstrate that large systems can be controlled only by using doped waveguide elements inside their rings whilst preserving their area and cost. We measure the large photoconductive changes of the waveguides for monitoring rings resonance conditions across high-dynamic ranges and leverage their thermo-optic effects for tuning. This allows us to control ring resonators without requiring additional components, complex tuning algorithms, or additional electrical I/Os. We demonstrate automatic resonance alignment of 31 rings of a 16x16 switch and of a 14-ring coupled resonator optical waveguide (CROW), making them the largest, yet most compact, automatically controlled silicon ring resonator circuits to date.
Low-loss photonic integrated circuits (PIC) and microresonators have enabled novel applications ranging from narrow-linewidth lasers, microwave photonics, to chip-scale optical frequency combs and quantum frequency conversion. To translate these resu
In integrated photonics, specific wavelengths are preferred such as 1550 nm due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, layered two-dimensional (2D) materials bear scientif
A novel technique is presented for realising programmable silicon photonic circuits. Once the proposed photonic circuit is programmed, its routing is retained without the need for additional power consumption. This technology enables a uniform multi-
Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolit
Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon col