ﻻ يوجد ملخص باللغة العربية
Coherent excitation of an ensemble of quantum objects underpins quantum many-body phenomena, and offers the opportunity to realize a quantum memory to store information from a qubit. Thus far, a deterministic and coherent interface between a single quantum system, e.g. a qubit, and such an ensemble has remained elusive. We first use an electron to cool the mesoscopic nuclear-spin ensemble of a semiconductor quantum dot to the nuclear sideband-resolved regime. We then implement an all-optical approach to access these individual quantized electronic-nuclear spin transitions. Finally, we perform coherent optical rotations of a single collective nuclear spin excitation corresponding to a spin wave called a nuclear magnon. These results constitute the building blocks of a dedicated local memory per quantum-dot spin qubit and promise a solid-state platform for quantum-state engineering of isolated many-body systems.
Electron-spin nitrogen-vacancy color centers in diamond are a natural candidate to act as a quantum memory for superconducting qubits because of their large collective coupling and long coherence times. We report here the first demonstration of stron
Nuclear spins were among the first physical platforms to be considered for quantum information processing, because of their exceptional quantum coherence and atomic-scale footprint. However, their full potential for quantum computing has not yet been
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number
We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of t
Epitaxially grown quantum dots (QDs) are promising sources of non-classical states of light such as single photons and entangled photons. However, in order for them to be used as a resource for long-distance quantum communication, distributed quantum