ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-Bath Decoherence of Hybrid Electron-Nuclear Spin Qubits

129   0   0.0 ( 0 )
 نشر من قبل Setrak Balian
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. J. Balian




اسأل ChatGPT حول البحث

A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number of environmental degrees of freedom, it is challenging to accurately calculate decoherence times $T_2$, especially when the qubit and environment are highly correlated. Hybrid or mixed electron-nuclear spin qubits, such as donors in silicon, possess optimal working points (OWPs) which are sweet-spots for reduced decoherence in magnetic fields. Analysis of sharp variations of $T_2$ near OWPs was previously based on insensitivity to classical noise, even though hybrid qubits are situated in highly correlated quantum environments, such as the nuclear spin bath of $^{29}$Si impurities. This presented limited understanding of the decoherence mechanism and gave unreliable predictions for $T_2$. I present quantum many-body calculations of the qubit-bath dynamics, which (i) yield $T_2$ for hybrid qubits in excellent agreement with experiments in multiple regimes, (ii) elucidate the many-body nature of the nuclear spin bath and (iii) expose significant differences between quantum-bath and classical-field decoherence. To achieve these, the cluster correlation expansion was adapted to include electron-nuclear state mixing. In addition, an analysis supported by experiment was carried out to characterise the nuclear spin bath for a bismuth donor as the hybrid qubit, a simple analytical formula for $T_2$ was derived with predictions in agreement with experiment, and the established method of dynamical decoupling was combined with operating near OWPs in order to maximise $T_2$. Finally, the decoherence of a $^{29}$Si spin in proximity to the hybrid qubit was studied, in order to establish the feasibility for its use as a quantum register.

قيم البحث

اقرأ أيضاً

Hybrid qubit systems combining electronic spins with nearby (proximate) nuclear spin registers offer a promising avenue towards quantum information processing, with even multi-spin error correction protocols recently demonstrated in diamond. However, for the important platform offered by spins of donor atoms in cryogenically-cooled silicon,decoherence mechanisms of $^{29}$Si proximate nuclear spins are not yet well understood.The reason is partly because proximate spins lie within a so-called frozen core region where the donor electronic hyperfine interaction strongly suppresses nuclear dynamics. We investigate the decoherence of a central proximate nuclear qubit arising from quantum spin baths outside, as well as inside, the frozen core around the donor electron. We consider the effect of a very large nuclear spin bath comprising many ($gtrsim 10^8$) weakly contributing pairs outside the frozen core. We also propose that there may be an important contribution from a few (of order $100$) symmetrically sited nuclear spin pairs (equivalent pairs), which were not previously considered as their effect is negligible outside the frozen core. If equivalent pairs represent a measurable source of decoherence, nuclear coherence decays could provide sensitive probes of the symmetries of electronic wavefunctions. For the phosphorus donor system, we obtain $T_{2n}$ values of order 1 second for both the far bath and equivalent pair models, confirming the suitability of proximate nuclei in silicon as very long-lived spin qubits.
In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of $^{29}rm{Si}$ ($p_{rm{Si}}=4.7%$) is about 4 times larger than that of $^{13}{rm C}$ ( $p_{rm{C}}=1.1%$), the electron spin coherence time of defect centers in SiC nuclear spin bath in strong magnetic field ($B>300~rm{Gauss}$) is longer than that of nitrogen-vacancy (NV) centers in $^{13}{rm C}$ nuclear spin bath in diamond. The reason for this counter-intuitive result is the suppression of heteronuclear-spin flip-flop process in finite magnetic field. Our results show that electron spin of defect centers in SiC are excellent candidates for solid state spin qubit in quantum information processing.
The interaction between a central qubit spin and a surrounding bath of spins is critical to spin-based solid state quantum sensing and quantum information processing. Spin-bath interactions are typically strongly anisotropic, and rapid physical rotat ion has long been used in solid-state nuclear magnetic resonance to simulate motional averaging of anisotropic interactions, such as dipolar coupling between nuclear spins. Here, we show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $^{13}$C nuclear spins in a diamond rotated at up to 300,000rpm introduces decoherence into the system via frequency-modulation of the nuclear spin Larmor precession. The presence of an off-axis magnetic field necessary for averaging of the dipolar coupling leads to a rotational dependence of the electron-nuclear hyperfine interaction, which cannot be averaged out with experimentally achievable rotation speeds. Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
We present pulsed electron-nuclear double resonance (ENDOR) experiments which enable us to characterize the coupling between bismuth donor spin qubits in Si and the surrounding spin bath of 29Si impurities which provides the dominant decoherence mech anism (nuclear spin diffusion) at low temperatures (< 16 K). Decoupling from the spin bath is predicted and cluster correlation expansion simulations show near-complete suppression of spin diffusion, at optimal working points. The suppression takes the form of sharply peaked divergences of the spin diffusion coherence time, in contrast with previously identified broader regions of insensitivity to classical fluctuations. ENDOR data suggest that anisotropic contributions are comparatively weak, so the form of the divergences is largely independent of crystal orientation.
We review progress on the use of electron spins to store and process quantum information, with particular focus on the ability of the electron spin to interact with multiple quantum degrees of freedom. We examine the benefits of hybrid quantum bits ( qubits) in the solid state that are based on coupling electron spins to nuclear spin, electron charge, optical photons, and superconducting qubits. These benefits include the coherent storage of qubits for times exceeding seconds, fast qubit manipulation, single qubit measurement, and scalable methods for entangling spatially separated matter-based qubits. In this way, the key strengths of different physical qubit implementations are brought together, laying the foundation for practical solid-state quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا