ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision tomography of a three-qubit electron-nuclear quantum processor in silicon

141   0   0.0 ( 0 )
 نشر من قبل Andrea Morello
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear spins were among the first physical platforms to be considered for quantum information processing, because of their exceptional quantum coherence and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, due to the lack of methods to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted $^{31}$P nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting a geometric phase to a shared electron spin, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely characterised using gate set tomography (GST), yielding one-qubit gate fidelities up to 99.93(3)%, two-qubit gate fidelity of 99.21(14)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger-Horne-Zeilinger three-qubit state with 92.5(1.0)% fidelity. Since electron spin qubits in semiconductors can be further coupled to other electrons or physically shuttled across different locations, these results establish a viable route for scalable quantum information processing using nuclear spins.

قيم البحث

اقرأ أيضاً

Solid-state spin qubits are a promising platform for quantum computation and quantum networks. Recent experiments have demonstrated high-quality control over multi-qubit systems, elementary quantum algorithms and non-fault-tolerant error correction. Large-scale systems will require using error-corrected logical qubits that are operated fault-tolerantly, so that reliable computation is possible despite noisy operations. Overcoming imperfections in this way remains a major outstanding challenge for quantum science. Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the 5-qubit code with a recently discovered flag protocol that enables fault-tolerance using a total of seven qubits. We encode the logical qubit using a novel protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. While future improvements in fidelity and the number of qubits will be required, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards large-scale quantum information processing based on solid-state spins.
Entanglement is a fundamental property of quantum mechanics, and is a primary resource in quantum information systems. Its manipulation remains a central challenge in the development of quantum technology. In this work, we demonstrate a device which can generate, manipulate, and analyse two-qubit entangled states, using miniature and mass-manufacturable silicon photonics. By combining four photon-pair sources with a reconfigurable six-mode interferometer, embedding a switchable entangling gate, we generate two-qubit entangled states, manipulate their entanglement, and analyse them, all in the same silicon chip. Using quantum state tomography, we show how our source can produce a range of entangled and separable states, and how our switchable controlled-Z gate operates on them, entangling them or making them separable depending on its configuration.
The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle i nformation tradeoff among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment which achieves this precision limit in adaptive quantum state tomography on optical polarization qubits. The two-step adaptive strategy employed in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimizing most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.
With qubit measurement and control fidelities above the threshold of fault-tolerance, much attention is moving towards the daunting task of scaling up the number of physical qubits to the large numbers needed for fault tolerant quantum computing. Her e, quantum dot based spin qubits may offer significant advantages due to their potential for high densities, all-electrical operation, and integration onto an industrial platform. In this system, the initialisation, readout, single- and two-qubit gates have been demonstrated in various qubit representations. However, as seen with other small scale quantum computer demonstrations, combining these elements leads to new challenges involving qubit crosstalk, state leakage, calibration, and control hardware which provide invaluable insight towards scaling up. Here we address these challenges and demonstrate a programmable two-qubit quantum processor in silicon by performing both the Deutsch-Josza and the Grover search algorithms. In addition, we characterise the entanglement in our processor through quantum state tomography of Bell states measuring state fidelities between 85-89% and concurrences between 73-80%. These results pave the way for larger scale quantum computers using spins confined to quantum dots.
Single nuclear spins in the solid state have long been envisaged as a platform for quantum computing, due to their long coherence times and excellent controllability. Measurements can be performed via localised electrons, for example those in single atom dopants or crystal defects. However, establishing long-range interactions between multiple dopants or defects is challenging. Conversely, in lithographically-defined quantum dots, tuneable interdot electron tunnelling allows direct coupling of electron spin-based qubits in neighbouring dots. Moreover, compatibility with semiconductor fabrication techniques provides a compelling route to scaling to large numbers of qubits. Unfortunately, hyperfine interactions are typically too weak to address single nuclei. Here we show that for electrons in silicon metal-oxide-semiconductor quantum dots the hyperfine interaction is sufficient to initialise, read-out and control single silicon-29 nuclear spins, yielding a combination of the long coherence times of nuclear spins with the flexibility and scalability of quantum dot systems. We demonstrate high-fidelity projective readout and control of the nuclear spin qubit, as well as entanglement between the nuclear and electron spins. Crucially, we find that both the nuclear spin and electron spin retain their coherence while moving the electron between quantum dots, paving the way to long range nuclear-nuclear entanglement via electron shuttling. Our results establish nuclear spins in quantum dots as a powerful new resource for quantum processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا