ﻻ يوجد ملخص باللغة العربية
We apply the model relating halo concentration to formation history proposed by Ludlow et al. to merger trees generated using an algorithm based on excursion set theory. We find that while the model correctly predicts the median relation between halo concentration and mass, it underpredicts the scatter in concentration at fixed mass. Since the same model applied to N-body merger trees predicts the correct scatter, we postulate that the missing scatter is due to the lack of any environmental dependence in merger trees derived from excursion set theory. We show that a simple modification to the merger tree construction algorithm, which makes merger rates dependent on environment, can increase the scatter by the required amount, and simultaneously provide a qualitatively correct correlation between environment and formation epoch in the excursion set merger trees.
The concentration parameter is a key characteristic of a dark matter halo that conveniently connects the halos present-day structure with its assembly history. Using Dark Sky, a suite of cosmological $N$-body simulations, we investigate how halo conc
We present a modification of the Press-Schechter (PS) formalism to derive general mass functions for primordial black holes (PBHs), considering their formation as being associated to the amplitude of linear energy density fluctuations. To accommodate
Lagrangian algorithms to simulate the evolution of cold dark matter (CDM) are invaluable tools to generate large suites of mock halo catalogues. In this paper, we first show that the main limitation of current semi-analytical schemes to simulate the
(abridged) We study the relation between the density profiles of dark matter halos and their mass assembly histories, using a statistical sample of halos in a high-resolution N-body simulation of the LCDM cosmology. For each halo at z=0, we identify
We examine the power spectrum of clusters in the Press-Schechter (PS) theory and in N-body simulations to see how the power spectrum of clusters is related to the power spectrum of matter density fluctuations in the Universe. An analytic model for th