ﻻ يوجد ملخص باللغة العربية
We examine the power spectrum of clusters in the Press-Schechter (PS) theory and in N-body simulations to see how the power spectrum of clusters is related to the power spectrum of matter density fluctuations in the Universe. An analytic model for the power spectrum of clusters for their given number density is presented, both for real space and redshift space. We test this model against results from N-body simulations and find that the agreement between the analytic theory and the numerical results is good for wavelengths $lambda >60h^{-1}$ Mpc. On smaller scales non-linear processes that are not considered in the linear PS approximation influence the result. We also use our analytic model to study the redshift-space power spectrum of clusters in cold dark matter models with a cosmological constant ($Lambda$CDM) and with a scale-invariant Harrison-Zeldovich initial spectrum of density fluctuations. We find that power spectra of clusters in these models are not consistent with the observed power spectra of the APM and Abell-ACO clusters. One possible explanation for the observed power spectra of clusters is an inflationary scenario with a scalar field with the potential that has a localized steplike feature. We use the PS theory to examine the power spectrum of clusters in this model.
We apply the model relating halo concentration to formation history proposed by Ludlow et al. to merger trees generated using an algorithm based on excursion set theory. We find that while the model correctly predicts the median relation between halo
We present a modification of the Press-Schechter (PS) formalism to derive general mass functions for primordial black holes (PBHs), considering their formation as being associated to the amplitude of linear energy density fluctuations. To accommodate
Lagrangian algorithms to simulate the evolution of cold dark matter (CDM) are invaluable tools to generate large suites of mock halo catalogues. In this paper, we first show that the main limitation of current semi-analytical schemes to simulate the
We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalog with spectroscopic redshifts up to $zapprox 0.1$. We detect the angular power spectrum up to a multipole of $ellapprox
We compute the angular power spectrum C_l from 1.5 million galaxies in early SDSS data on large angular scales, l<600. The data set covers about 160 square degrees, with a characteristic depth of order 1 Gpc/h in the faintest (21<r<22) of our four ma