ﻻ يوجد ملخص باللغة العربية
We present a modification of the Press-Schechter (PS) formalism to derive general mass functions for primordial black holes (PBHs), considering their formation as being associated to the amplitude of linear energy density fluctuations. To accommodate a wide range of physical relations between the linear and non-linear conditions for collapse, we introduce an additional parameter to the PS mechanism, and that the collapse occurs at either a given cosmic time, or as fluctuations enter the horizon. We study the case where fluctuations obey Gaussian statistics and follow a primordial power spectrum of broken power-law form with a blue spectral index for small scales. We use the observed abundance of super-massive black holes (SMBH) to constrain the extended mass functions taking into account dynamical friction. We further constrain the modified PS by developing a method for converting existing constraints on the PBH mass fraction, derived assuming monochromatic mass distributions for PBHs, into constraints applicable for extended PBH mass functions. We find that when considering well established monochromatic constraints there are regions in parameter space where all the dark matter can be made of PBHs. Of special interest is the region for the characteristic mass of the distribution ~10^2 M_Sun, for a wide range of blue spectral indices in the scenario where PBHs form as they enter the horizon, where the linear threshold for collapse is of the order of the typical overdensities, as this is close to the black hole masses detected by LIGO which are difficult to explain by stellar collapse.
The LIGO/Virgo Collaboration has recently observed GW190521, the first binary black hole merger with at least the primary component mass in the mass gap predicted by the pair-instability supernova theory. This observation disfavors the standard stell
Primordial black holes (PBHs) are those which may have formed in the early Universe and affected the subsequent evolution of the Universe through their Hawking radiation and gravitational field. To constrain the early Universe from the observational
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation,
We introduce a statistical method for estimating magnetic field fluctuations generated from primordial black hole (PBH) populations. To that end, we consider monochromatic and extended Press-Schechter PBH mass functions, such that each constituent is
Evidences for the primordial black holes (PBH) presence in the early Universe renew permanently. New limits on their mass spectrum challenge existing models of PBH formation. One of the known model is based on the closed walls collapse after the infl