ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperuniformity and generalized fluctuations at Jamming

347   0   0.0 ( 0 )
 نشر من قبل Yuanjian Zheng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The suppression of density fluctuations at different length scales is the hallmark of hyperuniformity. However, its existence and significance in jammed solids is still a matter of debate. We explore the presence of this hidden order in a manybody interacting model known to exhibit a rigidity transition, and find that in contrary to exisiting speculations, density fluctuations in the rigid phase are only suppressed up to a finite lengthscale. This length scale grows and diverges at the critical point of the rigidity transition, such that the system is hyperuniform in the fluid phase. This suggests that hyperuniformity is a feature generically absent in jammed solids. Surprisingly, corresponding fluctuations in geometrical properties of the model are found to be strongly suppressed over an even greater but still finite lengthscale, indicating that the system self organizes in preference to suppress geometrical fluctuations at the expense of incurring density fluctuations.



قيم البحث

اقرأ أيضاً

226 - Claudia Artiaco 2019
We present the study of the landscape structure of athermal soft spheres both as a function of the packing fraction and of the energy. We find that, on approaching the jamming transition, the number of different configurations available to the system has a steep increase and that a hierarchical organization of the landscape emerges. We use the knowledge of the structure of the landscape to predict the values of thermodynamic observables on the edge of the transition.
189 - Hyungjoon Soh , Meesoon Ha , 2017
We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jammin g, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially-condensed phase is the most interesting, compared to that in the original SB problem.
We provide a compact derivation of the static and dynamic equations for infinite-dimensional particle systems in the liquid and glass phases. The static derivation is based on the introduction of an auxiliary disorder and the use of the replica metho d. The dynamic derivation is based on the general analogy between replicas and the supersymmetric formulation of dynamics. We show that static and dynamic results are consistent, and follow the Random First Order Transition scenario of mean field disordered glassy systems.
Recent theoretical advances offer an exact, first-principle theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small inter-particle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the inter-particle gaps is known to be constant in all spatial dimensions $d$ -- including the physically relevant $d=2$ and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.
It is demonstrated, by numerical simulations of a 2D assembly of polydisperse disks, that there exists a range (plateau) of coarse graining scales for which the stress tensor field in a granular solid is nearly resolution independent, thereby enablin g an `objective definition of this field. Expectedly, it is not the mere size of the the system but the (related) magnitudes of the gradients that determine the widths of the plateaus. Ensemble averaging (even over `small ensembles) extends the widths of the plateaus to sub-particle scales. The fluctuations within the ensemble are studied as well. Both the response to homogeneous forcing and to an external compressive localized load (and gravity) are studied. Implications to small solid systems and constitutive relations are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا