ترغب بنشر مسار تعليمي؟ اضغط هنا

Jamming and condensation in one-dimensional driven flow

190   0   0.0 ( 0 )
 نشر من قبل Meesoon Ha
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially-condensed phase is the most interesting, compared to that in the original SB problem.



قيم البحث

اقرأ أيضاً

We study the phenomenon of jamming in driven diffusive systems. We introduce a simple microscopic model in which jamming of a conserved driven species is mediated by the presence of a non-conserved quantity, causing an effective long range interactio n of the driven species. We study the model analytically and numerically, providing strong evidence that jamming occurs; however, this proceeds via a strict phase transition (with spontaneous symmetry breaking) only in a prescribed limit. Outside this limit, the nearby transition (characterised by an essential singularity) induces sharp crossovers and transient coarsening phenomena. We discuss the relevance of the model to two physical situations: the clustering of buses, and the clogging of a suspension forced along a pipe.
137 - Weiguo Yin 2020
The Ising model, with short-range interactions between constituents, is a basic mathematical model in statistical mechanics. It has been widely used to describe collective phenomena such as order-disorder phase transitions in various physical, biolog ical, economical, and social systems. However, it was proven that spontaneous phase transitions do not exist in the one-dimensional Ising models. Besides low dimensionality, frustration is the other well-known suppressor of phase transitions. Here I show that surprisingly, a strongly frustrated one-dimensional two-leg ladder Ising model can exhibit a marginal finite-temperature phase transition. It features a large latent heat, a sharp peak in specific heat, and unconventional order parameters, which classify the transition as involving an entropy-favored intermediate-temperature ordered state and further unveil a crossover to an exotic normal state in which frustration effectively decouples the two strongly interacted legs in a counterintuitive non-mean-field way. These exact results expose a mathematical structure that has not appeared before in phase-transition problems, and shed new light on our understanding of phase transitions and the dynamical actions of frustration. Applications of this model and its mechanisms to various systems with extensions to consider higher dimensions, quantum characters, or external fields, etc. are anticipated and briefly discussed---with insights into the puzzling phenomena of strange strong frustration and intermediate-temperature orders such as the Bozin-Billinge orbital-degeneracy-lifting recently discovered in real materials.
Large-scale three dimensional molecular dynamics simulations of hopper flow are presented. The flow rate of the system is controlled by the width of the aperture at the bottom. As the steady-state flow rate is reduced, the force distribution $P(f)$ c hanges only slightly, while there is a large change in the impulse distribution $P(i)$. In both cases, the distributions show an increase in small forces or impulses as the systems approach jamming, the opposite of that seen in previous Lennard-Jones simulations. This occurs dynamically as well for a hopper that transitions from a flowing to a jammed state over time. The final jammed $P(f)$ is quite distinct from a poured packing $P(f)$ in the same geometry. The change in $P(i)$ is a much stronger indicator of the approach to jamming. The formation of a peak or plateau in $P(f)$ at the average force is not a general feature of the approach to jamming.
The suppression of density fluctuations at different length scales is the hallmark of hyperuniformity. However, its existence and significance in jammed solids is still a matter of debate. We explore the presence of this hidden order in a manybody in teracting model known to exhibit a rigidity transition, and find that in contrary to exisiting speculations, density fluctuations in the rigid phase are only suppressed up to a finite lengthscale. This length scale grows and diverges at the critical point of the rigidity transition, such that the system is hyperuniform in the fluid phase. This suggests that hyperuniformity is a feature generically absent in jammed solids. Surprisingly, corresponding fluctuations in geometrical properties of the model are found to be strongly suppressed over an even greater but still finite lengthscale, indicating that the system self organizes in preference to suppress geometrical fluctuations at the expense of incurring density fluctuations.
We present a driven diffusive model which we call the Bus Route Model. The model is defined on a one-dimensional lattice, with each lattice site having two binary variables, one of which is conserved (``buses) and one of which is non-conserved (``pas sengers). The buses are driven in a preferred direction and are slowed down by the presence of passengers who arrive with rate lambda. We study the model by simulation, heuristic argument and a mean-field theory. All these approaches provide strong evidence of a transition between an inhomogeneous ``jammed phase (where the buses bunch together) and a homogeneous phase as the bus density is increased. However, we argue that a strict phase transition is present only in the limit lambda -> 0. For small lambda, we argue that the transition is replaced by an abrupt crossover which is exponentially sharp in 1/lambda. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation of the model is given in which the spaces between ``buses and the buses themselves are interchanged. This describes a system of particles whose mobility decreases the longer they have been stationary and could provide a model for, say, the flow of a gelling or sticky material along a pipe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا