ﻻ يوجد ملخص باللغة العربية
We present the study of the landscape structure of athermal soft spheres both as a function of the packing fraction and of the energy. We find that, on approaching the jamming transition, the number of different configurations available to the system has a steep increase and that a hierarchical organization of the landscape emerges. We use the knowledge of the structure of the landscape to predict the values of thermodynamic observables on the edge of the transition.
We present a theoretical discussion of the reversible parking problem, which appears to be one of the simplest systems exhibiting glassy behavior. The existence of slow relaxation, nontrivial fluctuations, and an annealing effect can all be understoo
The suppression of density fluctuations at different length scales is the hallmark of hyperuniformity. However, its existence and significance in jammed solids is still a matter of debate. We explore the presence of this hidden order in a manybody in
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find tha
The swap Monte Carlo algorithm allows the preparation of highly stable glassy configurations for a number of glass-formers, but is inefficient for some models, such as the much studied binary Kob-Andersen (KA) mixture. We have recently developed gene
The free energy landscape of mean field marginal glasses is ultrametric. We demonstrate that this feature remains in finite three dimensional systems by finding sets of minima which are nearby in configuration space. By calculating the distance betwe