ﻻ يوجد ملخص باللغة العربية
Tropical geometry and the theory of Newton-Okounkov bodies are two methods which produce toric degenerations of an irreducible complex projective variety. Kaveh-Manon showed that the two are related. We give geometric maps between the Newton-Okounkov bodies corresponding to two adjacent maximal-dimensional prime cones in the tropicalization of $X$. Under a technical condition, we produce a natural algebraic wall-crossing map on the underlying value semigroups (of the corresponding valuations). In the case of the tropical Grassmannian $Gr(2,m)$, we prove that the algebraic wall-crossing map is the restriction of a geometric map. In an Appendix by Nathan Ilten, he explains how the geometric wall-crossing phenomenon can also be derived from the perspective of complexity-one $T$-varieties; Ilten also explains the connection to the combinatorial mutations studied by Akhtar-Coates-Galkin-Kasprzyk.
The main result of this note is that the toric degenerations of flag varieties associated to string polytopes and certain Bott-Samelson resolutions of flag varieties fit into a commutative diagram which gives a resolution of singularities of singular
In this paper, we study the geometry of various Hessenberg varieties in type A, as well as families thereof, with the additional goal of laying the groundwork for future computations of Newton-Okounkov bodies of Hessenberg varieties. Our main results
We show that quite universally the holonomicity of the complexity function of a big divisor on a projective variety does not predict the polyhedrality of the Newton-Okounkov body associated to every flag.
We consider flags $E_bullet={Xsupset Esupset {q}}$, where $E$ is an exceptional divisor defining a non-positive at infinity divisorial valuation $ u_E$ of a Hirzebruch surface $mathbb{F}_delta$ and $X$ the surface given by $ u_E,$ and determine an an
Let $X$ be a smooth irreducible complex algebraic variety of dimension $n$ and $L$ a very ample line bundle on $X$. Given a toric degeneration of $(X,L)$ satisfying some natural technical hypotheses, we construct a deformation ${J_s}$ of the complex