ترغب بنشر مسار تعليمي؟ اضغط هنا

Local polynomial estimation of the intensity of a doubly stochastic Poisson process with bandwidth selection procedure

148   0   0.0 ( 0 )
 نشر من قبل Thomas Deschatre
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Thomas Deschatre




اسأل ChatGPT حول البحث

We consider a doubly stochastic Poisson process with stochastic intensity $lambda_t =n qleft(X_tright)$ where $X$ is a continuous It^o semimartingale and $n$ is an integer. Both processes are observed continuously over a fixed period $left[0,Tright]$. An estimation procedure is proposed in a non parametrical setting for the function $q$ on an interval $I$ where $X$ is sufficiently observed using a local polynomial estimator. A method to select the bandwidth in a non asymptotic framework is proposed, leading to an oracle inequality. If $m$ is the degree of the chosen polynomial, the accuracy of our estimator over the Holder class of order $beta$ is $n^{frac{-beta}{2beta+1}}$ if $m geq lfloor beta rfloor$ and it is optimal in the minimax sense if $m geq lfloor beta rfloor$. A parametrical test is also proposed to test if $q$ belongs to some parametrical family. Those results are applied to French temperature and electricity spot prices data where we infer the intensity of electricity spot spikes as a function of the temperature.



قيم البحث

اقرأ أيضاً

In this paper, we deal with the problem of calibrating thresholding rules in the setting of Poisson intensity estimation. By using sharp concentration inequalities, oracle inequalities are derived and we establish the optimality of our estimate up to a logarithmic term. This result is proved under mild assumptions and we do not impose any condition on the support of the signal to be estimated. Our procedure is based on data-driven thresholds. As usual, they depend on a threshold parameter $gamma$ whose optimal value is hard to estimate from the data. Our main concern is to provide some theoretical and numerical results to handle this issue. In particular, we establish the existence of a minimal threshold parameter from the theoretical point of view: taking $gamma<1$ deteriorates oracle performances of our procedure. In the same spirit, we establish the existence of a maximal threshold parameter and our theoretical results point out the optimal range $gammain[1,12]$. Then, we lead a numerical study that shows that choosing $gamma$ larger than 1 but close to 1 is a fairly good choice. Finally, we compare our procedure with classical ones revealing the harmful role of the support of functions when estimated by classical procedures.
The purpose of this paper is to estimate the intensity of a Poisson process $N$ by using thresholding rules. In this paper, the intensity, defined as the derivative of the mean measure of $N$ with respect to $ndx$ where $n$ is a fixed parameter, is a ssumed to be non-compactly supported. The estimator $tilde{f}_{n,gamma}$ based on random thresholds is proved to achieve the same performance as the oracle estimator up to a possible logarithmic term. Then, minimax properties of $tilde{f}_{n,gamma}$ on Besov spaces ${cal B}^{ensuremath alpha}_{p,q}$ are established. Under mild assumptions, we prove that $$sup_{fin B^{ensuremath alpha}_{p,q}cap ensuremath mathbb {L}_{infty}} ensuremath mathbb {E}(ensuremath | | tilde{f}_{n,gamma}-f| |_2^2)leq C(frac{log n}{n})^{frac{ensuremath alpha}{ensuremath alpha+{1/2}+({1/2}-frac{1}{p})_+}}$$ and the lower bound of the minimax risk for ${cal B}^{ensuremath alpha}_{p,q}cap ensuremath mathbb {L}_{infty}$ coincides with the previous upper bound up to the logarithmic term. This new result has two consequences. First, it establishes that the minimax rate of Besov spaces ${cal B}^{ensuremath alpha}_{p,q}$ with $pleq 2$ when non compactly supported functions are considered is the same as for compactly supported functions up to a logarithmic term. When $p>2$, the rate exponent, which depends on $p$, deteriorates when $p$ increases, which means that the support plays a harmful role in this case. Furthermore, $tilde{f}_{n,gamma}$ is adaptive minimax up to a logarithmic term.
145 - Jean-Marc Azais 2018
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the m ean and variance of this estimator, together with asymptotic normality results, for a large class of Gaussian processes. We allow for general mean functions and study the aggregation of several estimators based on various variation sequences. In extensive simulation studies, we show that the asymptotic results accurately depict thefinite-sample situations already for small to moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the aggregation procedure.
261 - Keli Guo 2020
The research described herewith is to re-visit the classical doubly robust estimation of average treatment effect by conducting a systematic study on the comparisons, in the sense of asymptotic efficiency, among all possible combinations of the estim ated propensity score and outcome regression. To this end, we consider all nine combinations under, respectively, parametric, nonparametric and semiparametric structures. The comparisons provide useful information on when and how to efficiently utilize the model structures in practice. Further, when there is model-misspecification, either propensity score or outcome regression, we also give the corresponding comparisons. Three phenomena are observed. Firstly, when all models are correctly specified, any combination can achieve the same semiparametric efficiency bound, which coincides with the existing results of some combinations. Secondly, when the propensity score is correctly modeled and estimated, but the outcome regression is misspecified parametrically or semiparametrically, the asymptotic variance is always larger than or equal to the semiparametric efficiency bound. Thirdly, in contrast, when the propensity score is misspecified parametrically or semiparametrically, while the outcome regression is correctly modeled and estimated, the asymptotic variance is not necessarily larger than the semiparametric efficiency bound. In some cases, the super-efficiency phenomenon occurs. We also conduct a small numerical study.
This paper is devoted to the estimation of the common marginal density function of weakly dependent processes. The accuracy of estimation is measured using pointwise risks. We propose a datadriven procedure using kernel rules. The bandwidth is select ed using the approach of Goldenshluger and Lepski and we prove that the resulting estimator satisfies an oracle type inequality. The procedure is also proved to be adaptive (in a minimax framework) over a scale of Holder balls for several types of dependence: stong mixing processes, $lambda$-dependent processes or i.i.d. sequences can be considered using a single procedure of estimation. Some simulations illustrate the performance of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا