ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubly robust estimation of average treatment effect revisited

262   0   0.0 ( 0 )
 نشر من قبل Lixing Zhu
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Keli Guo




اسأل ChatGPT حول البحث

The research described herewith is to re-visit the classical doubly robust estimation of average treatment effect by conducting a systematic study on the comparisons, in the sense of asymptotic efficiency, among all possible combinations of the estimated propensity score and outcome regression. To this end, we consider all nine combinations under, respectively, parametric, nonparametric and semiparametric structures. The comparisons provide useful information on when and how to efficiently utilize the model structures in practice. Further, when there is model-misspecification, either propensity score or outcome regression, we also give the corresponding comparisons. Three phenomena are observed. Firstly, when all models are correctly specified, any combination can achieve the same semiparametric efficiency bound, which coincides with the existing results of some combinations. Secondly, when the propensity score is correctly modeled and estimated, but the outcome regression is misspecified parametrically or semiparametrically, the asymptotic variance is always larger than or equal to the semiparametric efficiency bound. Thirdly, in contrast, when the propensity score is misspecified parametrically or semiparametrically, while the outcome regression is correctly modeled and estimated, the asymptotic variance is not necessarily larger than the semiparametric efficiency bound. In some cases, the super-efficiency phenomenon occurs. We also conduct a small numerical study.

قيم البحث

اقرأ أيضاً

129 - Chuyun Ye , Keli Guo , Lixing Zhu 2020
In this paper, we apply doubly robust approach to estimate, when some covariates are given, the conditional average treatment effect under parametric, semiparametric and nonparametric structure of the nuisance propensity score and outcome regression models. We then conduct a systematic study on the asymptotic distributions of nine estimators with different combinations of estimated propensity score and outcome regressions. The study covers the asymptotic properties with all models correctly specified; with either propensity score or outcome regressions locally / globally misspecified; and with all models locally / globally misspecified. The asymptotic variances are compared and the asymptotic bias correction under model-misspecification is discussed. The phenomenon that the asymptotic variance, with model-misspecification, could sometimes be even smaller than that with all models correctly specified is explored. We also conduct a numerical study to examine the theoretical results.
Missing attributes are ubiquitous in causal inference, as they are in most applied statistical work. In this paper, we consider various sets of assumptions under which causal inference is possible despite missing attributes and discuss corresponding approaches to average treatment effect estimation, including generalized propensity score methods and multiple imputation. Across an extensive simulation study, we show that no single method systematically out-performs others. We find, however, that doubly robust modifications of standard methods for average treatment effect estimation with missing data repeatedly perform better than their non-doubly robust baselines; for example, doubly robust generalized propensity score methods beat inverse-weighting with the generalized propensity score. This finding is reinforced in an analysis of an observations study on the effect on mortality of tranexamic acid administration among patients with traumatic brain injury in the context of critical care management. Here, doubly robust estimators recover confidence intervals that are consistent with evidence from randomized trials, whereas non-doubly robust estimators do not.
Many popular methods for building confidence intervals on causal effects under high-dimensional confounding require strong ultra-sparsity assumptions that may be difficult to validate in practice. To alleviate this difficulty, we here study a new met hod for average treatment effect estimation that yields asymptotically exact confidence intervals assuming that either the conditional response surface or the conditional probability of treatment allows for an ultra-sparse representation (but not necessarily both). This guarantee allows us to provide valid inference for average treatment effect in high dimensions under considerably more generality than available baselines. In addition, we showcase that our results are semi-parametrically efficient.
This paper constructs a doubly robust estimator for continuous dose-response estimation. An outcome regression model is augmented with a set of inverse generalized propensity score covariates to correct for potential misspecification bias. From the a ugmented model we can obtain consistent estimates of mean average potential outcomes for distinct strata of the treatment. A polynomial regression is then fitted to these point estimates to derive a Taylor approximation to the continuous dose-response function. The bootstrap is used for variance estimation. Analytical results and simulations show that our approach can provide a good approximation to linear or nonlinear dose-response functions under various sources of misspecification of the outcome regression or propensity score models. Efficiency in finite samples is good relative to minimum variance consistent estimators.
It is important to estimate the local average treatment effect (LATE) when compliance with a treatment assignment is incomplete. The previously proposed methods for LATE estimation required all relevant variables to be jointly observed in a single da taset; however, it is sometimes difficult or even impossible to collect such data in many real-world problems for technical or privacy reasons. We consider a novel problem setting in which LATE, as a function of covariates, is nonparametrically identified from the combination of separately observed datasets. For estimation, we show that the direct least squares method, which was originally developed for estimating the average treatment effect under complete compliance, is applicable to our setting. However, model selection and hyperparameter tuning for the direct least squares estimator can be unstable in practice since it is defined as a solution to the minimax problem. We then propose a weighted least squares estimator that enables simpler model selection by avoiding the minimax objective formulation. Unlike the inverse probability weighted (IPW) estimator, the proposed estimator directly uses the pre-estimated weight without inversion, avoiding the problems caused by the IPW methods. We demonstrate the effectiveness of our method through experiments using synthetic and real-world datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا