ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the estimation of the common marginal density function of weakly dependent processes. The accuracy of estimation is measured using pointwise risks. We propose a datadriven procedure using kernel rules. The bandwidth is selected using the approach of Goldenshluger and Lepski and we prove that the resulting estimator satisfies an oracle type inequality. The procedure is also proved to be adaptive (in a minimax framework) over a scale of Holder balls for several types of dependence: stong mixing processes, $lambda$-dependent processes or i.i.d. sequences can be considered using a single procedure of estimation. Some simulations illustrate the performance of the proposed method.
In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. W
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the m
We introduce the ARMA (autoregressive-moving-average) point process, which is a Hawkes process driven by a Neyman-Scott process with Poisson immigration. It contains both the Hawkes and Neyman-Scott process as special cases and naturally combines sel
We consider a doubly stochastic Poisson process with stochastic intensity $lambda_t =n qleft(X_tright)$ where $X$ is a continuous It^o semimartingale and $n$ is an integer. Both processes are observed continuously over a fixed period $left[0,Tright]$
We discuss parametric estimation of a degenerate diffusion system from time-discrete observations. The first component of the degenerate diffusion system has a parameter $theta_1$ in a non-degenerate diffusion coefficient and a parameter $theta_2$ in