ﻻ يوجد ملخص باللغة العربية
We study single-phase and particulate turbulent channel flows, bounded by two incompressible hyper-elastic walls. Different wall elasticities are considered with and without a 10% volume fraction of finite-size rigid spherical particles, while elastic walls are modelled as a neo-Hookean material. We report a significant drag increase and an enhancement of the turbulence activity with growing wall elasticity for both single-phase and particulate cases in comparison with the single-phase flow over rigid walls. A drag reduction and a turbulence attenuation is obtained for the particulate cases with highly elastic walls, albeit with respect to the single-phase flow of the same wall elasticity; whereas, an opposite effect of the particles is observed on the flow of the less elastic walls. This is explained by investigating the near-wall turbulence of highly elastic walls, where the strong asymmetry in the magnitude of wall-normal velocity fluctuations (favouring the positive), is found to push the particles towards the channel centre. The particle layer close to the wall is shown to contribute to the turbulence production by increasing the wall-normal velocity fluctuations, while in the absence of this layer, smaller wall deformation and in turn a turbulence attenuation is observed. We further address the effect of the volume fraction at a moderate wall elasticity, by increasing the particle volume fraction up to 20%. Migration of the particles from the interface region is found to be the cause of a further turbulence attenuation, in comparison to the same volume fraction in the case of rigid walls. However, the particle induced stress compensates for the loss of the Reynolds shear stress, thus, resulting in a higher overall drag for the case with elastic walls. The effect of wall-elasticity on the drag is reported to reduce significantly with increasing volume fraction of particles.
We study the effect of particle shape on the turbulence in suspensions of spheroidal particles at volume fraction $phi = 10%$ and show how the near-wall particle dynamics deeply changes with the particle aspect ratio and how this affects the global s
Harmonic oscillations of the walls of a turbulent plane channel flow are studied by direct numerical simulations to improve our understanding of the physical mechanism for skin-friction drag reduction. The simulations are carried out at constant pres
We use an acoustic Lagrangian tracking technique, particularly adapted to measurements in open flows, and a versatile material particles generator (in the form of soap bubbles with adjustable size and density) to characterize Lagrangian statistics of
We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier-Stokes equations coupled with the evolution equation for the elastovi
Turbulence modeling is a classical approach to address the multiscale nature of fluid turbulence. Instead of resolving all scales of motion, which is currently mathematically and numerically intractable, reduced models that capture the large-scale be