ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent transport of material particles: An experimental study of finite size effects

126   0   0.0 ( 0 )
 نشر من قبل Mickael Bourgoin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use an acoustic Lagrangian tracking technique, particularly adapted to measurements in open flows, and a versatile material particles generator (in the form of soap bubbles with adjustable size and density) to characterize Lagrangian statistics of finite sized, neutrally bouyant, particles transported in an isotropic turbulent flow of air. We vary the size of the particles in a range corresponding to turbulent inertial scales and explore how the turbulent forcing experienced by the particles depends on their size. We show that, while the global shape of the intermittent acceleration probability density function does not depend significantly on particle size, the acceleration variance of the particles decreases as they become larger in agreement with the classical scaling for the spectrum of Eulerian pressure fluctuations in the carrier flow.



قيم البحث

اقرأ أيضاً

We study single-phase and particulate turbulent channel flows, bounded by two incompressible hyper-elastic walls. Different wall elasticities are considered with and without a 10% volume fraction of finite-size rigid spherical particles, while elasti c walls are modelled as a neo-Hookean material. We report a significant drag increase and an enhancement of the turbulence activity with growing wall elasticity for both single-phase and particulate cases in comparison with the single-phase flow over rigid walls. A drag reduction and a turbulence attenuation is obtained for the particulate cases with highly elastic walls, albeit with respect to the single-phase flow of the same wall elasticity; whereas, an opposite effect of the particles is observed on the flow of the less elastic walls. This is explained by investigating the near-wall turbulence of highly elastic walls, where the strong asymmetry in the magnitude of wall-normal velocity fluctuations (favouring the positive), is found to push the particles towards the channel centre. The particle layer close to the wall is shown to contribute to the turbulence production by increasing the wall-normal velocity fluctuations, while in the absence of this layer, smaller wall deformation and in turn a turbulence attenuation is observed. We further address the effect of the volume fraction at a moderate wall elasticity, by increasing the particle volume fraction up to 20%. Migration of the particles from the interface region is found to be the cause of a further turbulence attenuation, in comparison to the same volume fraction in the case of rigid walls. However, the particle induced stress compensates for the loss of the Reynolds shear stress, thus, resulting in a higher overall drag for the case with elastic walls. The effect of wall-elasticity on the drag is reported to reduce significantly with increasing volume fraction of particles.
At finite Reynolds numbers, Re, particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and Re<<1, to finite-size particles in a channel flow at Re < 20. Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate Re.
The existence of a quiescent core (QC) in the center of turbulent channel flows was demonstrated in recent experimental and numerical studies. The QC-region, which is characterized by relatively uniform velocity magnitude and weak turbulence levels, occupies about $40%$ of the cross-section at Reynolds numbers $Re_tau$ ranging from $1000$ to $4000$. The influence of the QC region and its boundaries on transport and accumulation of inertial particles has never been investigated before. Here, we first demonstrate that a QC is unidentifiable at $Re_tau = 180$, before an in-depth exploration of particle-laden turbulent channel flow at $Re_tau = 600$ is performed. The inertial spheres exhibited a tendency to accumulate preferentially in high-speed regions within the QC, i.e. contrary to the well-known concentration in low-speed streaks in the near-wall region. The particle wall-normal distribution, quantified by means of Voronoi volumes and particle number concentrations, varied abruptly across the QC-boundary and vortical flow structures appeared as void areas due to the centrifugal mechanism. The QC-boundary, characterized by a localized strong shear layer, appeared as a emph{barrier}, across which transport of inertial particles is hindered. Nevertheless, the statistics conditioned in QC-frame show that the mean velocity of particles outside of the QC was towards the core, whereas particles within the QC tended to migrate towards the wall. Such upward and downward particle motions are driven by similar motions of fluid parcels. The present results show that the QC exerts a substantial influence on transport and accumulation of inertial particles, which is of practical relevance in high-Reynolds number channel flow.
We investigate experimentally the spatial distributions of heavy and neutrally buoyant particles of finite size in a fully turbulent flow. As their Stokes number (i.e. ratio of the particle viscous relaxation time to a typical flow time scale) is clo se to 1, one may expect both classes of particles to aggregate in specific flow regions. This is not observed. Using a Voronoi analysis we show that neutrally buoyant particles sample turbulence homogeneously, whereas heavy particles do cluster. One implication for the understanding and modeling of particle laden flows, is that the Stokes number cannot be the sole key parameter as soon as the dynamics of finite-size objects is considered.
We investigate the preferential concentration of particles which are neutrally buoyant but with a diameter significantly larger than the dissipation scale of the carrier flow. Such particles are known not to behave as flow tracers (Qureshi et al., Ph ys. Re. Lett. 2007) but whether they do cluster or not remains an open question. For this purpose, we take advantage of a new turbulence generating apparatus, the Lagrangian Exploration Module which produces homogeneous and isotropic turbulence in a closed water flow. The flow is seeded with neutrally buoyant particles with diameter 700mum, corresponding to 4.4 to 17 times the turbulent dissipation scale when the rotation frequency of the impellers driving the flow goes from 2 Hz to 12 Hz, and spanning a range of Stokes numbers from 1.6 to 24.2. The spatial structuration of these inclusions is then investigated by a Voronoi tesselation analysis, as recently proposed by Monchaux et al. (Phys. Fluids 2010), from images of particle concentration field taken in a laser sheet at the center of the flow. No matter the rotating frequency and subsequently the Reynolds and Stokes numbers, the particles are found not to cluster. The Stokes number by itself is therefore shown to be an insufficient indicator of the clustering trend in particles laden flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا