ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep learning for turbulent channel flow

301   0   0.0 ( 0 )
 نشر من قبل Rui Fang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Turbulence modeling is a classical approach to address the multiscale nature of fluid turbulence. Instead of resolving all scales of motion, which is currently mathematically and numerically intractable, reduced models that capture the large-scale behavior are derived. One of the most popular reduced models is the Reynolds averaged Navier-Stokes (RANS) equations. The goal is to solve the RANS equations for the mean velocity and pressure field. However, the RANS equations contain a term called the Reynolds stress tensor, which is not known in terms of the mean velocity field. Many RANS turbulence models have been proposed to model the Reynolds stress tensor in terms of the mean velocity field, but are usually not suitably general for all flow fields of interest. Data-driven turbulence models have recently garnered considerable attention and have been rapidly developed. In a seminal work, Ling et al (2016) developed the tensor basis neural network (TBNN), which was used to learn a general Galilean invariant model for the Reynolds stress tensor. The TBNN was applied to a variety of flow fields with encouraging results. In the present study, the TBNN is applied to the turbulent channel flow. Its performance is compared with classical turbulence models as well as a neural network model that does not preserve Galilean invariance. A sensitivity study on the TBNN reveals that the network attempts to adjust to the dataset, but is limited by the mathematical form that guarantees Galilean invariance.



قيم البحث

اقرأ أيضاً

Reynolds-averaged Navier-Stokes (RANS) equations are presently one of the most popular models for simulating turbulence. Performing RANS simulation requires additional modeling for the anisotropic Reynolds stress tensor, but traditional Reynolds stre ss closure models lead to only partially reliable predictions. Recently, data-driven turbulence models for the Reynolds anisotropy tensor involving novel machine learning techniques have garnered considerable attention and have been rapidly developed. Focusing on modeling the Reynolds stress closure for the specific case of turbulent channel flow, this paper proposes three modifications to a standard neural network to account for the no-slip boundary condition of the anisotropy tensor, the Reynolds number dependence, and spatial non-locality. The modified models are shown to provide increased predicative accuracy compared to the standard neural network when they are trained and tested on channel flow at different Reynolds numbers. The best performance is yielded by the model combining the boundary condition enforcement and Reynolds number injection. This model also outperforms the Tensor Basis Neural Network (Ling et al., 2016) on the turbulent channel flow dataset.
We investigate the applicability of machine learning based reduced order model (ML-ROM) to three-dimensional complex flows. As an example, we consider a turbulent channel flow at the friction Reynolds number of $Re_tau=110$ in a minimum domain which can maintain coherent structures of turbulence. Training data set are prepared by direct numerical simulation (DNS). The present ML-ROM is constructed by combining a three-dimensional convolutional neural network autoencoder (CNN-AE) and a long short-term memory (LSTM). The CNN-AE works to map high-dimensional flow fields into a low-dimensional latent space. The LSTM is then utilized to predict a temporal evolution of the latent vectors obtained by the CNN-AE. The combination of CNN-AE and LSTM can represent the spatio-temporal high-dimensional dynamics of flow fields by only integrating the temporal evolution of the low-dimensional latent dynamics. The turbulent flow fields reproduced by the present ML-ROM show statistical agreement with the reference DNS data in time-ensemble sense, which can also be found through an orbit-based analysis. Influences of the population of vortical structures contained in the domain and the time interval used for temporal prediction on the ML- ROM performance are also investigated. The potential and limitation of the present ML-ROM for turbulence analysis are discussed at the end of our presentation.
We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier-Stokes equations coupled with the evolution equation for the elastovi scoplastic stress tensor. The laminar simulations are carried out for a wide range of Reynolds numbers, Bingham numbers and ratios of the fluid and total viscosity, while the turbulent flow simulations are performed at a fixed bulk Reynolds number equal to 2800 and weak elasticity. We show that in the laminar flow regime the friction factor increases monotonically with the Bingham number (yield stress) and decreases with the viscosity ratio, while in the turbulent regime the the friction factor is almost independent of the viscosity ratio and decreases with the Bingham number, until the flow eventually returns to a fully laminar condition for large enough yield stresses. Three main regimes are found in the turbulent case, depending on the Bingham number: for low values, the friction Reynolds number and the turbulent flow statistics only slightly differ from those of a Newtonian fluid; for intermediate values of the Bingham number, the fluctuations increase and the inertial equilibrium range is lost. Finally, for higher values the flow completely laminarises. These different behaviors are associated with a progressive increases of the volume where the fluid is not yielded, growing from the centerline towards the walls as the Bingham number increases. The unyielded region interacts with the near-wall structures, forming preferentially above the high speed streaks. In particular, the near-wall streaks and the associated quasi-streamwise vortices are strongly enhanced in an highly elastoviscoplastic fluid and the flow becomes more correlated in the streamwise direction.
207 - Yilang Liu , Weiwei Zhang 2020
This paper proposes a new data assimilation method for recovering high fidelity turbulent flow field around airfoil at high Reynolds numbers based on experimental data, which is called Proper Orthogonal Decomposition Inversion (POD-Inversion) data as similation method. Aiming at the flows including shock wave discontinuities or separated flows at high angle of attack, the proposed method can reconstruct high-fidelity turbulent flow field combining with experimental distributed force coefficients. We firstly perform the POD analysis to the turbulent eddy viscosity fields computed by SA model and obtain the base POD modes. Then optimized the POD coefficients by global optimization algorithm coupling with the Navier-Stokes equations solver. The high-fidelity turbulent flied are recovered by several main modes, which can dramatically reduce the dimensions of the system. The effectiveness of the method is verified by the cases of transonic flow around the RAE2822 airfoil at high Reynolds numbers and the separated flow at high angles of attack. The results demonstrate that the proposed assimilation method can recover the turbulent flow field which optimally match the experimental data, and significantly reduce the error of pressure coefficients. The proposed data assimilation method can offer high-fidelity field data for turbulent model based on machine learning.
144 - Faranggis Bagheri 2010
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF ) of finite-time Lyapunov exponents and from them the corresponding Cramers function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B model (for Weissenberg number $Wi <1$) and the FENE model. We use the location of the minima of the Cramers function to define the Weissenberg number precisely such that we observe coil-stretch transition at $Wiapprox1$. We find agreement with earlier analytical predictions for PDF of polymer extensions made by Balkovsky, Fouxon and Lebedev [Phys. Rev. Lett., 84, 4765 (2000).] for linear polymers (Oldroyd-B model) with $Wi<1$ and by Chertkov [Phys. Rev. Lett., 84, 4761 (2000).] for nonlinear FENE-P model of polymers. For $Wi>1$ (FENE model) the polymer are significantly more stretched near the wall than at the center of the channel where the flow is closer to homogenous isotropic turbulence. Furthermore near the wall the polymers show a strong tendency to orient along the stream-wise direction of the flow but near the centerline the statistics of orientation of the polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا