ﻻ يوجد ملخص باللغة العربية
In this paper, one-stage explicit trigonometric integrators for solving quasilinear wave equations are formulated and studied. For solving wave equations, we first introduce trigonometric integrators as the semidiscretization in time and then consider a spectral Galerkin method for the discretization in space. We show that one-stage explicit trigonometric integrators in time have second-order convergence and the result is also true for the fullydiscrete scheme without requiring any CFL-type coupling of the discretization parameters. The results are proved by using energy techniques, which are widely applied in the numerical analysis of methods for partial differential equations.
We present a new numerical method for solving time dependent Maxwell equations, which is also suitable for general linear hyperbolic equations. It is based on an unstructured partitioning of the spacetime domain into tent-shaped regions that respect
We provide a preliminary comparison of the dispersion properties, specifically the time-amplification factor, the scaled group velocity and the error in the phase speed of four spatiotemporal discretization schemes utilized for solving the one-dimens
This paper continues to study the explicit two-stage fourth-order accurate time discretiza- tions [5, 7]. By introducing variable weights, we propose a class of more general explicit one-step two-stage time discretizations, which are different from t
In this work, we design and investigate contrast-independent partially explicit time discretizations for wave equations in heterogeneous high-contrast media. We consider multiscale problems, where the spatial heterogeneities are at subgrid level and
In this paper, we propose a $mu$-mode integrator for computing the solution of stiff evolution equations. The integrator is based on a d-dimensional splitting approach and uses exact (usually precomputed) one-dimensional matrix exponentials. We show