ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a $mu$-mode integrator for computing the solution of stiff evolution equations. The integrator is based on a d-dimensional splitting approach and uses exact (usually precomputed) one-dimensional matrix exponentials. We show that the action of the exponentials, i.e. the corresponding batched matrix-vector products, can be implemented efficiently on modern computer systems. We further explain how $mu$-mode products can be used to compute spectral transformations efficiently even if no fast transform is available. We illustrate the performance of the new integrator by solving three-dimensional linear and nonlinear Schrodinger equations, and we show that the $mu$-mode integrator can significantly outperform numerical methods well established in the field. We also discuss how to efficiently implement this integrator on both multi-core CPUs and GPUs. Finally, the numerical experiments show that using GPUs results in performance improvements between a factor of 10 and 20, depending on the problem.
The Vlasov--Maxwell equations are used for the kinetic description of magnetized plasmas. As they are posed in an up to 3+3 dimensional phase space, solving this problem is extremely expensive from a computational point of view. In this paper, we exp
The G-equation is a well-known model for studying front propagation in turbulent combustion. In this paper, we develop an efficient model reduction method for computing textcolor{black}{regular solutions} of viscous G-equations in incompressible stea
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high ord
There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). In this paper, we introduce a deep recurrent framework for solving time-dependent PDEs without generating large scale data sets. We prov
In this paper, one-stage explicit trigonometric integrators for solving quasilinear wave equations are formulated and studied. For solving wave equations, we first introduce trigonometric integrators as the semidiscretization in time and then conside