ﻻ يوجد ملخص باللغة العربية
This paper continues to study the explicit two-stage fourth-order accurate time discretiza- tions [5, 7]. By introducing variable weights, we propose a class of more general explicit one-step two-stage time discretizations, which are different from the existing methods, such as the Euler methods, Runge-Kutta methods, and multistage multiderivative methods etc. We study the absolute stability, the stability interval, and the intersection between the imaginary axis and the absolute stability region. Our results show that our two-stage time discretizations can be fourth-order accurate conditionally, the absolute stability region of the proposed methods with some special choices of the variable weights can be larger than that of the classical explicit fourth- or fifth-order Runge-Kutta method, and the interval of absolute stability can be almost twice as much as the latter. Several numerical experiments are carried out to demonstrate the performance and accuracy as well as the stability of our proposed methods
This paper studies the two-stage fourth-order accurate time discretization cite{LI-DU:2016} and applies it to special relativistic hydrodynamical equations. It is shown that new two-stage fourth-order accurate time discretizations can be proposed. Wi
Many multiscale problems have a high contrast, which is expressed as a very large ratio between the media properties. The contrast is known to introduce many challenges in the design of multiscale methods and domain decomposition approaches. These is
In this work, we design and investigate contrast-independent partially explicit time discretizations for wave equations in heterogeneous high-contrast media. We consider multiscale problems, where the spatial heterogeneities are at subgrid level and
This work continues a line of works on developing partially explicit methods for multiscale problems. In our previous works, we have considered linear multiscale problems, where the spatial heterogeneities are at subgrid level and are not resolved. I
We study discretizations of Hamiltonian systems on the probability density manifold equipped with the $L^2$-Wasserstein metric. Based on discrete optimal transport theory, several Hamiltonian systems on graph (lattice) with different weights are deri