ترغب بنشر مسار تعليمي؟ اضغط هنا

On the explicit two-stage fourth-order accurate time discretizations

119   0   0.0 ( 0 )
 نشر من قبل Huazhong Tang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper continues to study the explicit two-stage fourth-order accurate time discretiza- tions [5, 7]. By introducing variable weights, we propose a class of more general explicit one-step two-stage time discretizations, which are different from the existing methods, such as the Euler methods, Runge-Kutta methods, and multistage multiderivative methods etc. We study the absolute stability, the stability interval, and the intersection between the imaginary axis and the absolute stability region. Our results show that our two-stage time discretizations can be fourth-order accurate conditionally, the absolute stability region of the proposed methods with some special choices of the variable weights can be larger than that of the classical explicit fourth- or fifth-order Runge-Kutta method, and the interval of absolute stability can be almost twice as much as the latter. Several numerical experiments are carried out to demonstrate the performance and accuracy as well as the stability of our proposed methods



قيم البحث

اقرأ أيضاً

This paper studies the two-stage fourth-order accurate time discretization cite{LI-DU:2016} and applies it to special relativistic hydrodynamical equations. It is shown that new two-stage fourth-order accurate time discretizations can be proposed. Wi th the aid of the direct Eulerian GRP (generalized Riemann problem) methods cite{Yang-He-Tang:2011,Yang-Tang:2012} and the analytical resolution of the local quasi 1D GRP, the two-stage fourth-order accurate time discretizations are successfully implemented for the 1D and 2D special relativistic hydrodynamical equations. Several numerical experiments demonstrate the performance and accuracy as well as robustness of our schemes.
Many multiscale problems have a high contrast, which is expressed as a very large ratio between the media properties. The contrast is known to introduce many challenges in the design of multiscale methods and domain decomposition approaches. These is sues to some extend are analyzed in the design of spatial multiscale and domain decomposition approaches. However, some of these issues remain open for time dependent problems as the contrast affects the time scales, particularly, for explicit methods. For example, in parabolic equations, the time step is $dt=H^2/kappa_{max}$, where $kappa_{max}$ is the largest diffusivity. In this paper, we address this issue in the context of parabolic equation by designing a splitting algorithm. The proposed splitting algorithm treats dominant multiscale modes in the implicit fashion, while the rest in the explicit fashion. The unconditional stability of these algorithms require a special multiscale space design, which is the main purpose of the paper. We show that with an appropriate choice of multiscale spaces we can achieve an unconditional stability with respect to the contrast. This could provide computational savings as the time step in explicit methods is adversely affected by the contrast. We discuss some theoretical aspects of the proposed algorithms. Numerical results are presented.
In this work, we design and investigate contrast-independent partially explicit time discretizations for wave equations in heterogeneous high-contrast media. We consider multiscale problems, where the spatial heterogeneities are at subgrid level and are not resolved. In our previous work, we have introduced contrast-independent partially explicit time discretizations and applied to parabolic equations. The main idea of contrast-independent partially explicit time discretization is to split the spatial space into two components: contrast dependent (fast) and contrast independent (slow) spaces defined via multiscale space decomposition. Using this decomposition, our goal is further appropriately to introduce time splitting such that the resulting scheme is stable and can guarantee contrast-independent discretization under some suitable (reasonable) conditions. In this paper, we propose contrast-independent partially explicitly scheme for wave equations. The splitting requires a careful design. We prove that the proposed splitting is unconditionally stable under some suitable conditions formulated for the second space (slow). This condition requires some type of non-contrast dependent space and is easier to satisfy in the slow space. We present numerical results and show that the proposed methods provide results similar to implicit methods with the time step that is independent of the contrast.
185 - Eric T. Chung 2021
This work continues a line of works on developing partially explicit methods for multiscale problems. In our previous works, we have considered linear multiscale problems, where the spatial heterogeneities are at subgrid level and are not resolved. I n these works, we have introduced contrast-independent partially explicit time discretizations for linear equations. The contrast-independent partially explicit time discretization divides the spatial space into two components: contrast dependent (fast) and contrast independent (slow) spaces defined via multiscale space decomposition. Following this decomposition, temporal splitting is proposed that treats fast components implicitly and slow components explicitly. The space decomposition and temporal splitting are chosen such that it guarantees a stability and formulate a condition for the time stepping. This condition is formulated as a condition on slow spaces. In this paper, we extend this approach to nonlinear problems. We propose a splitting approach and derive a condition that guarantees stability. This condition requires some type of contrast-independent spaces for slow components of the solution. We present numerical results and show that the proposed methods provide results similar to implicit methods with the time step that is independent of the contrast.
We study discretizations of Hamiltonian systems on the probability density manifold equipped with the $L^2$-Wasserstein metric. Based on discrete optimal transport theory, several Hamiltonian systems on graph (lattice) with different weights are deri ved, which can be viewed as spatial discretizations to the original Hamiltonian systems. We prove the consistency and provide the approximate orders for those discretizations. By regularizing the system using Fisher information, we deduce an explicit lower bound for the density function, which guarantees that symplectic schemes can be used to discretize in time. Moreover, we show desirable long time behavior of these schemes, and demonstrate their performance on several numerical examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا