ﻻ يوجد ملخص باللغة العربية
We present a new numerical method for solving time dependent Maxwell equations, which is also suitable for general linear hyperbolic equations. It is based on an unstructured partitioning of the spacetime domain into tent-shaped regions that respect causality. Provided that an approximate solution is available at the tent bottom, the equation can be locally evolved up to the top of the tent. By mapping tents to a domain which is a tensor product of a spatial domain with a time interval, it is possible to construct a fully explicit scheme that advances the solution through unstructured meshes. This work highlights a difficulty that arises when standard explicit Runge Kutta schemes are used in this context and proposes an alternative structure-aware Taylor time-stepping technique. Thus explicit methods are constructed that allow variable time steps and local refinements without compromising high order accuracy in space and time. These Mapped Tent Pitching (MTP) schemes lead to highly parallel algorithms, which utilize modern computer architectures extremely well.
A spacetime domain can be progressively meshed by tent shaped objects. Numerical methods for solving hyperbolic systems using such tent meshes to advance in time have been proposed previously. Such schemes have the ability to advance in time by diffe
For time-dependent problems with high-contrast multiscale coefficients, the time step size for explicit methods is affected by the magnitude of the coefficient parameter. With a suitable construction of multiscale space, one can achieve a stable temp
We provide a preliminary comparison of the dispersion properties, specifically the time-amplification factor, the scaled group velocity and the error in the phase speed of four spatiotemporal discretization schemes utilized for solving the one-dimens
In this paper, one-stage explicit trigonometric integrators for solving quasilinear wave equations are formulated and studied. For solving wave equations, we first introduce trigonometric integrators as the semidiscretization in time and then conside
We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and non-linear elliptic partial differential equations. The scheme constitutes the foundation of the elliptic solver for the SpECTRE numerical r