ﻻ يوجد ملخص باللغة العربية
Exploiting low-rank structure of the user-item rating matrix has been the crux of many recommendation engines. However, existing recommendation engines force raters with heterogeneous behavior profiles to map their intrinsic rating scales to a common rating scale (e.g. 1-5). This non-linear transformation of the rating scale shatters the low-rank structure of the rating matrix, therefore resulting in a poor fit and consequentially, poor recommendations. In this paper, we propose Clustered Monotone Transforms for Rating Factorization (CMTRF), a novel approach to perform regression up to unknown monotonic transforms over unknown population segments. Essentially, for recommendation systems, the technique searches for monotonic transformations of the rating scales resulting in a better fit. This is combined with an underlying matrix factorization regression model that couples the user-wise ratings to exploit shared low dimensional structure. The rating scale transformations can be generated for each user, for a cluster of users, or for all the users at once, forming the basis of three simple and efficient algorithms proposed in this paper, all of which alternate between transformation of the rating scales and matrix factorization regression. Despite the non-convexity, CMTRF is theoretically shown to recover a unique solution under mild conditions. Experimental results on two synthetic and seven real-world datasets show that CMTRF outperforms other state-of-the-art baselines.
Matrix factorization (MF) has been widely used to discover the low-rank structure and to predict the missing entries of data matrix. In many real-world learning systems, the data matrix can be very high-dimensional but sparse. This poses an imbalance
Text reviews can provide rich useful semantic information for modeling users and items, which can benefit rating prediction in recommendation. Different words and reviews may have different informativeness for users or items. Besides, different users
In this work, we propose FM-Pair, an adaptation of Factorization Machines with a pairwise loss function, making them effective for datasets with implicit feedback. The optimization model in FM-Pair is based on the BPR (Bayesian Personalized Ranking)
Although latent factor models (e.g., matrix factorization) achieve good accuracy in rating prediction, they suffer from several problems including cold-start, non-transparency, and suboptimal recommendation for local users or items. In this paper, we
Deep Learning and factorization-based collaborative filtering recommendation models have undoubtedly dominated the scene of recommender systems in recent years. However, despite their outstanding performance, these methods require a training time pro