ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Review Rating Prediction with Hierarchical Attentions and Latent Factors

79   0   0.0 ( 0 )
 نشر من قبل Hongtao Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text reviews can provide rich useful semantic information for modeling users and items, which can benefit rating prediction in recommendation. Different words and reviews may have different informativeness for users or items. Besides, different users and items should be personalized. Most existing works regard all reviews equally or utilize a general attention mechanism. In this paper, we propose a hierarchical attention model fusing latent factor model for rating prediction with reviews, which can focus on important words and informative reviews. Specially, we use the factor vectors of Latent Factor Model to guide the attention network and combine the factor vectors with feature representation learned from reviews to predict the final ratings. Experiments on real-world datasets validate the effectiveness of our approach.



قيم البحث

اقرأ أيضاً

Although latent factor models (e.g., matrix factorization) achieve good accuracy in rating prediction, they suffer from several problems including cold-start, non-transparency, and suboptimal recommendation for local users or items. In this paper, we employ textual review information with ratings to tackle these limitations. Firstly, we apply a proposed aspect-aware topic model (ATM) on the review text to model user preferences and item features from different aspects, and estimate the aspect importance of a user towards an item. The aspect importance is then integrated into a novel aspect-aware latent factor model (ALFM), which learns users and items latent factors based on ratings. In particular, ALFM introduces a weighted matrix to associate those latent factors with the same set of aspects discovered by ATM, such that the latent factors could be used to estimate aspect ratings. Finally, the overall rating is computed via a linear combination of the aspect ratings, which are weighted by the corresponding aspect importance. To this end, our model could alleviate the data sparsity problem and gain good interpretability for recommendation. Besides, an aspect rating is weighted by an aspect importance, which is dependent on the targeted users preferences and targeted items features. Therefore, it is expected that the proposed method can model a users preferences on an item more accurately for each user-item pair locally. Comprehensive experimental studies have been conducted on 19 datasets from Amazon and Yelp 2017 Challenge dataset. Results show that our method achieves significant improvement compared with strong baseline methods, especially for users with only few ratings. Moreover, our model could interpret the recommendation results in depth.
Task-oriented dialog presents a difficult challenge encompassing multiple problems including multi-turn language understanding and generation, knowledge retrieval and reasoning, and action prediction. Modern dialog systems typically begin by converti ng conversation history to a symbolic object referred to as belief state by using supervised learning. The belief state is then used to reason on an external knowledge source whose result along with the conversation history is used in action prediction and response generation tasks independently. Such a pipeline of individually optimized components not only makes the development process cumbersome but also makes it non-trivial to leverage session-level user reinforcement signals. In this paper, we develop Neural Assistant: a single neural network model that takes conversation history and an external knowledge source as input and jointly produces both text response and action to be taken by the system as output. The model learns to reason on the provided knowledge source with weak supervision signal coming from the text generation and the action prediction tasks, hence removing the need for belief state annotations. In the MultiWOZ dataset, we study the effect of distant supervision, and the size of knowledge base on model performance. We find that the Neural Assistant without belief states is able to incorporate external knowledge information achieving higher factual accuracy scores compared to Transformer. In settings comparable to reported baseline systems, Neural Assistant when provided with oracle belief state significantly improves language generation performance.
298 - Zefang Liu 2020
We predict restaurant ratings from Yelp reviews based on Yelp Open Dataset. Data distribution is presented, and one balanced training dataset is built. Two vectorizers are experimented for feature engineering. Four machine learning models including N aive Bayes, Logistic Regression, Random Forest, and Linear Support Vector Machine are implemented. Four transformer-based models containing BERT, DistilBERT, RoBERTa, and XLNet are also applied. Accuracy, weighted F1 score, and confusion matrix are used for model evaluation. XLNet achieves 70% accuracy for 5-star classification compared with Logistic Regression with 64% accuracy.
Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simp le text corpus as input for review rating prediction, ignoring the hierarchies among data. In this paper, we propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation, which can serve as an effective decision-making tool for the academic paper review process. Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three). Each encoder first derives contextual representation of each level, then generates a higher-level representation, and after the learning process, we are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers. Furthermore, we introduce two new metrics to evaluate models in data imbalance situations. Extensive experiments on a publicly available dataset (PeerRead) and our own collected dataset (OpenReview) demonstrate the superiority of the proposed approach compared with state-of-the-art methods.
169 - Lu Yu , Junming Huang , Chuang Liu 2014
Interactions between search and recommendation have recently attracted significant attention, and several studies have shown that many potential applications involve with a joint problem of producing recommendations to users with respect to a given q uery, termed $Collaborative$ $Retrieval$ (CR). Successful algorithms designed for CR should be potentially flexible at dealing with the sparsity challenges since the setup of collaborative retrieval associates with a given $query$ $times$ $user$ $times$ $item$ tensor instead of traditional $user$ $times$ $item$ matrix. Recently, several works are proposed to study CR task from users perspective. In this paper, we aim to sufficiently explore the sophisticated relationship of each $query$ $times$ $user$ $times$ $item$ triple from items perspective. By integrating item-based collaborative information for this joint task, we present an alternative factorized model that could better evaluate the ranks of those items with sparse information for the given query-user pair. In addition, we suggest to employ a recently proposed scalable ranking learning algorithm, namely BPR, to optimize the state-of-the-art approach, $Latent$ $Collaborative$ $Retrieval$ model, instead of the original learning algorithm. The experimental results on two real-world datasets, (i.e. emph{Last.fm}, emph{Yelp}), demonstrate the efficiency and effectiveness of our proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا