ﻻ يوجد ملخص باللغة العربية
Although latent factor models (e.g., matrix factorization) achieve good accuracy in rating prediction, they suffer from several problems including cold-start, non-transparency, and suboptimal recommendation for local users or items. In this paper, we employ textual review information with ratings to tackle these limitations. Firstly, we apply a proposed aspect-aware topic model (ATM) on the review text to model user preferences and item features from different aspects, and estimate the aspect importance of a user towards an item. The aspect importance is then integrated into a novel aspect-aware latent factor model (ALFM), which learns users and items latent factors based on ratings. In particular, ALFM introduces a weighted matrix to associate those latent factors with the same set of aspects discovered by ATM, such that the latent factors could be used to estimate aspect ratings. Finally, the overall rating is computed via a linear combination of the aspect ratings, which are weighted by the corresponding aspect importance. To this end, our model could alleviate the data sparsity problem and gain good interpretability for recommendation. Besides, an aspect rating is weighted by an aspect importance, which is dependent on the targeted users preferences and targeted items features. Therefore, it is expected that the proposed method can model a users preferences on an item more accurately for each user-item pair locally. Comprehensive experimental studies have been conducted on 19 datasets from Amazon and Yelp 2017 Challenge dataset. Results show that our method achieves significant improvement compared with strong baseline methods, especially for users with only few ratings. Moreover, our model could interpret the recommendation results in depth.
Text reviews can provide rich useful semantic information for modeling users and items, which can benefit rating prediction in recommendation. Different words and reviews may have different informativeness for users or items. Besides, different users
Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually
Due to its storage and retrieval efficiency, cross-modal hashing~(CMH) has been widely used for cross-modal similarity search in multimedia applications. According to the training strategy, existing CMH methods can be mainly divided into two categori
The number of user reviews of tourist attractions, restaurants, mobile apps, etc. is increasing for all languages; yet, research is lacking on how reviews in multiple languages should be aggregated and displayed. Speakers of different languages may h
Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two es