ﻻ يوجد ملخص باللغة العربية
We revisit Rahimi and Recht (2007)s kernel random Fourier features (RFF) method through the lens of the PAC-Bayesian theory. While the primary goal of RFF is to approximate a kernel, we look at the Fourier transform as a prior distribution over trigonometric hypotheses. It naturally suggests learning a posterior on these hypotheses. We derive generalization bounds that are optimized by learning a pseudo-posterior obtained from a closed-form expression. Based on this study, we consider two learning strategies: The first one finds a compact landmarks-based representation of the data where each landmark is given by a distribution-tailored similarity measure, while the second one provides a PAC-Bayesian justification to the kernel alignment method of Sinha and Duchi (2016).
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy
We propose a probabilistic kernel approach for preferential learning from pairwise duelling data using Gaussian Processes. Different from previous methods, we do not impose a total order on the item space, hence can capture more expressive latent pre
Bayesian neural networks have shown great promise in many applications where calibrated uncertainty estimates are crucial and can often also lead to a higher predictive performance. However, it remains challenging to choose a good prior distribution
We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structur