ﻻ يوجد ملخص باللغة العربية
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy for an analyst to know a good clustering when she sees one. We present a new approach to interactive clustering for data exploration, called ciif, based on a particularly simple feedback mechanism, in which an analyst can choose to reject individual clusters and request new ones. The new clusters should be different from previously rejected clusters while still fitting the data well. We formalize this interaction in a novel Bayesian prior elicitation framework. In each iteration, the prior is adapted to account for all the previous feedback, and a new clustering is then produced from the posterior distribution. To achieve the computational efficiency necessary for an interactive setting, we propose an incremental optimization method over data minibatches using Lagrangian relaxation. Experiments demonstrate that ciif can produce accurate and diverse clusterings.
A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy
We revisit Rahimi and Recht (2007)s kernel random Fourier features (RFF) method through the lens of the PAC-Bayesian theory. While the primary goal of RFF is to approximate a kernel, we look at the Fourier transform as a prior distribution over trigo
We introduce a density-based clustering method called skeleton clustering that can detect clusters in multivariate and even high-dimensional data with irregular shapes. To bypass the curse of dimensionality, we propose surrogate density measures that
We study a recent inferential framework, named posterior regularisation, on the Bayesian hierarchical mixture clustering (BHMC) model. This framework facilitates a simple way to impose extra constraints on a Bayesian model to overcome some weakness o
Bayesian neural networks have shown great promise in many applications where calibrated uncertainty estimates are crucial and can often also lead to a higher predictive performance. However, it remains challenging to choose a good prior distribution