ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Gaussian Graphical Models With Fractional Marginal Pseudo-likelihood

230   0   0.0 ( 0 )
 نشر من قبل Janne Lepp\\\"a-Aho
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing methods for learning Gaussian graphical models are either restricted to decomposable graphs or require specification of a tuning parameter that may have a substantial impact on learned structures. By combining a simple sparsity inducing prior for the graph structures with a default reference prior for the model parameters, we obtain a fast and easily applicable scoring function that works well for even high-dimensional data. We demonstrate the favourable performance of our approach by large-scale comparisons against the leading methods for learning non-decomposable Gaussian graphical models. A theoretical justification for our method is provided by showing that it yields a consistent estimator of the graph structure.



قيم البحث

اقرأ أيضاً

Fitting a graphical model to a collection of random variables given sample observations is a challenging task if the observed variables are influenced by latent variables, which can induce significant confounding statistical dependencies among the ob served variables. We present a new convex relaxation framework based on regularized conditional likelihood for latent-variable graphical modeling in which the conditional distribution of the observed variables conditioned on the latent variables is given by an exponential family graphical model. In comparison to previously proposed tractable methods that proceed by characterizing the marginal distribution of the observed variables, our approach is applicable in a broader range of settings as it does not require knowledge about the specific form of distribution of the latent variables and it can be specialized to yield tractable approaches to problems in which the observed data are not well-modeled as Gaussian. We demonstrate the utility and flexibility of our framework via a series of numerical experiments on synthetic as well as real data.
Graphical model selection in Markov random fields is a fundamental problem in statistics and machine learning. Two particularly prominent models, the Ising model and Gaussian model, have largely developed in parallel using different (though often rel ated) techniques, and several practical algorithms with rigorous sample complexity bounds have been established for each. In this paper, we adapt a recently proposed algorithm of Klivans and Meka (FOCS, 2017), based on the method of multiplicative weight updates, from the Ising model to the Gaussian model, via non-trivial modifications to both the algorithm and its analysis. The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature, has a low runtime $O(mp^2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
Marginal-likelihood based model-selection, even though promising, is rarely used in deep learning due to estimation difficulties. Instead, most approaches rely on validation data, which may not be readily available. In this work, we present a scalabl e marginal-likelihood estimation method to select both hyperparameters and network architectures, based on the training data alone. Some hyperparameters can be estimated online during training, simplifying the procedure. Our marginal-likelihood estimate is based on Laplaces method and Gauss-Newton approximations to the Hessian, and it outperforms cross-validation and manual-tuning on standard regression and image classification datasets, especially in terms of calibration and out-of-distribution detection. Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable (e.g., in nonstationary settings).
We propose a practical Bayesian optimization method using Gaussian process regression, of which the marginal likelihood is maximized where the number of model selection steps is guided by a pre-defined threshold. Since Bayesian optimization consumes a large portion of its execution time in finding the optimal free parameters for Gaussian process regression, our simple, but straightforward method is able to mitigate the time complexity and speed up the overall Bayesian optimization procedure. Finally, the experimental results show that our method is effective to reduce the execution time in most of cases, with less loss of optimization quality.
139 - Xin Gao , Helene Massam 2012
In this article, we discuss the composite likelihood estimation of sparse Gaussian graphical models. When there are symmetry constraints on the concentration matrix or partial correlation matrix, the likelihood estimation can be computational intensi ve. The composite likelihood offers an alternative formulation of the objective function and yields consistent estimators. When a sparse model is considered, the penalized composite likelihood estimation can yield estimates satisfying both the symmetry and sparsity constraints and possess ORACLE property. Application of the proposed method is demonstrated through simulation studies and a network analysis of a biological data set.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا