ترغب بنشر مسار تعليمي؟ اضغط هنا

BabyAI: A Platform to Study the Sample Efficiency of Grounded Language Learning

97   0   0.0 ( 0 )
 نشر من قبل Dzmitry Bahdanau
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.



قيم البحث

اقرأ أيضاً

Recent research efforts enable study for natural language grounded navigation in photo-realistic environments, e.g., following natural language instructions or dialog. However, existing methods tend to overfit training data in seen environments and f ail to generalize well in previously unseen environments. To close the gap between seen and unseen environments, we aim at learning a generalized navigation model from two novel perspectives: (1) we introduce a multitask navigation model that can be seamlessly trained on both Vision-Language Navigation (VLN) and Navigation from Dialog History (NDH) tasks, which benefits from richer natural language guidance and effectively transfers knowledge across tasks; (2) we propose to learn environment-agnostic representations for the navigation policy that are invariant among the environments seen during training, thus generalizing better on unseen environments. Extensive experiments show that environment-agnostic multitask learning significantly reduces the performance gap between seen and unseen environments, and the navigation agent trained so outperforms baselines on unseen environments by 16% (relative measure on success rate) on VLN and 120% (goal progress) on NDH. Our submission to the CVDN leaderboard establishes a new state-of-the-art for the NDH task on the holdout test set. Code is available at https://github.com/google-research/valan.
Compared to traditional visual question answering, video-grounded dialogues require additional reasoning over dialogue context to answer questions in a multi-turn setting. Previous approaches to video-grounded dialogues mostly use dialogue context as a simple text input without modelling the inherent information flows at the turn level. In this paper, we propose a novel framework of Reasoning Paths in Dialogue Context (PDC). PDC model discovers information flows among dialogue turns through a semantic graph constructed based on lexical components in each question and answer. PDC model then learns to predict reasoning paths over this semantic graph. Our path prediction model predicts a path from the current turn through past dialogue turns that contain additional visual cues to answer the current question. Our reasoning model sequentially processes both visual and textual information through this reasoning path and the propagated features are used to generate the answer. Our experimental results demonstrate the effectiveness of our method and provide additional insights on how models use semantic dependencies in a dialogue context to retrieve visual cues.
We introduce Act2Vec, a general framework for learning context-based action representation for Reinforcement Learning. Representing actions in a vector space help reinforcement learning algorithms achieve better performance by grouping similar action s and utilizing relations between different actions. We show how prior knowledge of an environment can be extracted from demonstrations and injected into action vector representations that encode natural compatible behavior. We then use these for augmenting state representations as well as improving function approximation of Q-values. We visualize and test action embeddings in three domains including a drawing task, a high dimensional navigation task, and the large action space domain of StarCraft II.
A video-grounded dialogue system is required to understand both dialogue, which contains semantic dependencies from turn to turn, and video, which contains visual cues of spatial and temporal scene variations. Building such dialogue systems is a chal lenging problem, involving various reasoning types on both visual and language inputs. Existing benchmarks do not have enough annotations to thoroughly analyze dialogue systems and understand their capabilities and limitations in isolation. These benchmarks are also not explicitly designed to minimise biases that models can exploit without actual reasoning. To address these limitations, in this paper, we present DVD, a Diagnostic Dataset for Video-grounded Dialogues. The dataset is designed to contain minimal biases and has detailed annotations for the different types of reasoning over the spatio-temporal space of video. Dialogues are synthesized over multiple question turns, each of which is injected with a set of cross-turn semantic relationships. We use DVD to analyze existing approaches, providing interesting insights into their abilities and limitations. In total, DVD is built from $11k$ CATER synthetic videos and contains $10$ instances of $10$-round dialogues for each video, resulting in more than $100k$ dialogues and $1M$ question-answer pairs. Our code and dataset are publicly available at https://github.com/facebookresearch/DVDialogues.
When automatically generating a sentence description for an image or video, it often remains unclear how well the generated caption is grounded, that is whether the model uses the correct image regions to output particular words, or if the model is h allucinating based on priors in the dataset and/or the language model. The most common way of relating image regions with words in caption models is through an attention mechanism over the regions that are used as input to predict the next word. The model must therefore learn to predict the attentional weights without knowing the word it should localize. This is difficult to train without grounding supervision since recurrent models can propagate past information and there is no explicit signal to force the captioning model to properly ground the individual decoded words. In this work, we help the model to achieve this via a novel cyclical training regimen that forces the model to localize each word in the image after the sentence decoder generates it, and then reconstruct the sentence from the localized image region(s) to match the ground-truth. Our proposed framework only requires learning one extra fully-connected layer (the localizer), a layer that can be removed at test time. We show that our model significantly improves grounding accuracy without relying on grounding supervision or introducing extra computation during inference, for both image and video captioning tasks. Code is available at https://github.com/chihyaoma/cyclical-visual-captioning .

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا