ﻻ يوجد ملخص باللغة العربية
A video-grounded dialogue system is required to understand both dialogue, which contains semantic dependencies from turn to turn, and video, which contains visual cues of spatial and temporal scene variations. Building such dialogue systems is a challenging problem, involving various reasoning types on both visual and language inputs. Existing benchmarks do not have enough annotations to thoroughly analyze dialogue systems and understand their capabilities and limitations in isolation. These benchmarks are also not explicitly designed to minimise biases that models can exploit without actual reasoning. To address these limitations, in this paper, we present DVD, a Diagnostic Dataset for Video-grounded Dialogues. The dataset is designed to contain minimal biases and has detailed annotations for the different types of reasoning over the spatio-temporal space of video. Dialogues are synthesized over multiple question turns, each of which is injected with a set of cross-turn semantic relationships. We use DVD to analyze existing approaches, providing interesting insights into their abilities and limitations. In total, DVD is built from $11k$ CATER synthetic videos and contains $10$ instances of $10$-round dialogues for each video, resulting in more than $100k$ dialogues and $1M$ question-answer pairs. Our code and dataset are publicly available at https://github.com/facebookresearch/DVDialogues.
Compared to traditional visual question answering, video-grounded dialogues require additional reasoning over dialogue context to answer questions in a multi-turn setting. Previous approaches to video-grounded dialogues mostly use dialogue context as
Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over mu
Non-task oriented dialogue systems have achieved great success in recent years due to largely accessible conversation data and the development of deep learning techniques. Given a context, current systems are able to yield a relevant and fluent respo
Diagnostic reasoning is a key component of many professions. To improve students diagnostic reasoning skills, educational psychologists analyse and give feedback on epistemic activities used by these students while diagnosing, in particular, hypothes
Visual Dialog is a multimodal task of answering a sequence of questions grounded in an image, using the conversation history as context. It entails challenges in vision, language, reasoning, and grounding. However, studying these subtasks in isolatio