ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Generate Grounded Visual Captions without Localization Supervision

104   0   0.0 ( 0 )
 نشر من قبل Chih-Yao Ma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When automatically generating a sentence description for an image or video, it often remains unclear how well the generated caption is grounded, that is whether the model uses the correct image regions to output particular words, or if the model is hallucinating based on priors in the dataset and/or the language model. The most common way of relating image regions with words in caption models is through an attention mechanism over the regions that are used as input to predict the next word. The model must therefore learn to predict the attentional weights without knowing the word it should localize. This is difficult to train without grounding supervision since recurrent models can propagate past information and there is no explicit signal to force the captioning model to properly ground the individual decoded words. In this work, we help the model to achieve this via a novel cyclical training regimen that forces the model to localize each word in the image after the sentence decoder generates it, and then reconstruct the sentence from the localized image region(s) to match the ground-truth. Our proposed framework only requires learning one extra fully-connected layer (the localizer), a layer that can be removed at test time. We show that our model significantly improves grounding accuracy without relying on grounding supervision or introducing extra computation during inference, for both image and video captioning tasks. Code is available at https://github.com/chihyaoma/cyclical-visual-captioning .

قيم البحث

اقرأ أيضاً

Methodologies for training visual question answering (VQA) models assume the availability of datasets with human-annotated textit{Image-Question-Answer} (I-Q-A) triplets. This has led to heavy reliance on datasets and a lack of generalization to new types of questions and scenes. Linguistic priors along with biases and errors due to annotator subjectivity have been shown to percolate into VQA models trained on such samples. We study whether models can be trained without any human-annotated Q-A pairs, but only with images and their associated textual descriptions or captions. We present a method to train models with synthetic Q-A pairs generated procedurally from captions. Additionally, we demonstrate the efficacy of spatial-pyramid image patches as a simple but effective alternative to dense and costly object bounding box annotations used in existing VQA models. Our experiments on three VQA benchmarks demonstrate the efficacy of this weakly-supervised approach, especially on the VQA-CP challenge, which tests performance under changing linguistic priors.
This paper presents a novel approach for automatically generating image descriptions: visual detectors, language models, and multimodal similarity models learnt directly from a dataset of image captions. We use multiple instance learning to train vis ual detectors for words that commonly occur in captions, including many different parts of speech such as nouns, verbs, and adjectives. The word detector outputs serve as conditional inputs to a maximum-entropy language model. The language model learns from a set of over 400,000 image descriptions to capture the statistics of word usage. We capture global semantics by re-ranking caption candidates using sentence-level features and a deep multimodal similarity model. Our system is state-of-the-art on the official Microsoft COCO benchmark, producing a BLEU-4 score of 29.1%. When human judges compare the system captions to ones written by other people on our held-out test set, the system captions have equal or better quality 34% of the time.
332 - Chao Jia , Yinfei Yang , Ye Xia 2021
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.
This paper explores new evaluation perspectives for image captioning and introduces a noun translation task that achieves comparative image caption generation performance by translating from a set of nouns to captions. This implies that in image capt ioning, all word categories other than nouns can be evoked by a powerful language model without sacrificing performance on n-gram precision. The paper also investigates lower and upper bounds of how much individual word categories in the captions contribute to the final BLEU score. A large possible improvement exists for nouns, verbs, and prepositions.
Systems that can find correspondences between multiple modalities, such as between speech and images, have great potential to solve different recognition and data analysis tasks in an unsupervised manner. This work studies multimodal learning in the context of visually grounded speech (VGS) models, and focuses on their recently demonstrated capability to extract spatiotemporal alignments between spoken words and the corresponding visual objects without ever been explicitly trained for object localization or word recognition. As the main contributions, we formalize the alignment problem in terms of an audiovisual alignment tensor that is based on earlier VGS work, introduce systematic metrics for evaluating model performance in aligning visual objects and spoken words, and propose a new VGS model variant for the alignment task utilizing cross-modal attention layer. We test our model and a previously proposed model in the alignment task using SPEECH-COCO captions coupled with MSCOCO images. We compare the alignment performance using our proposed evaluation metrics to the semantic retrieval task commonly used to evaluate VGS models. We show that cross-modal attention layer not only helps the model to achieve higher semantic cross-modal retrieval performance, but also leads to substantial improvements in the alignment performance between image object and spoken words.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا