ﻻ يوجد ملخص باللغة العربية
Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmidt return rate. When domain walls in the spectrum of the quench Hamiltonian are energetically favored to be bound rather than freely propagating, anomalous cusps appear in the return rate regardless of the initial state. In the nearest-neighbor limit, domain walls are always freely propagating, and anomalous cusps never appear. As a consequence, our work illustrates that models in the same equilibrium universality class can still exhibit fundamentally distinct out-of-equilibrium criticality. Our results are accessible to current ultracold-atom and ion-trap experiments.
We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A$to$B$to$A). As prototype models, we consider the (inte
We study high frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynami
Dynamical phase transitions extend the notion of criticality to non-stationary settings and are characterized by sudden changes in the macroscopic properties of time-evolving quantum systems. Investigations of dynamical phase transitions combine aspe
Recent experiments on a one-dimensional chain of trapped alkali atoms [arXiv:1707.04344] have observed a quantum transition associated with the onset of period-3 ordering of pumped Rydberg states. This spontaneous $mathbb{Z}_3$ symmetry breaking is d
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge