ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical response near quantum critical points

155   0   0.0 ( 0 )
 نشر من قبل William Witczak-Krempa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study high frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from conformal field theory allow us to fix the high frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality, and numerically via Quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high frequency optical conductivity, and the corresponding sum rule.


قيم البحث

اقرأ أيضاً

Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmid t return rate. When domain walls in the spectrum of the quench Hamiltonian are energetically favored to be bound rather than freely propagating, anomalous cusps appear in the return rate regardless of the initial state. In the nearest-neighbor limit, domain walls are always freely propagating, and anomalous cusps never appear. As a consequence, our work illustrates that models in the same equilibrium universality class can still exhibit fundamentally distinct out-of-equilibrium criticality. Our results are accessible to current ultracold-atom and ion-trap experiments.
242 - Gaoyong Sun , Bo-Bo Wei 2020
We analytically and numerically study the Loschmidt echo and the dynamical order parameters in a spin chain with a deconfined phase transition between a dimerized state and a ferromagnetic phase. For quenches from a dimerized state to a ferromagnetic phase, we find that the model can exhibit a dynamical quantum phase transition characterized by an associating dimerized order parameters. In particular, when quenching the system from the Majumdar-Ghosh state to the ferromagnetic Ising state, we find an exact mapping into the classical Ising chain for a quench from the paramagnetic phase to the classical Ising phase by analytically calculating the Loschmidt echo and the dynamical order parameters. By contrast, for quenches from a ferromagnetic state to a dimerized state, the system relaxes very fast so that the dynamical quantum transition may only exist in a short time scale. We reveal that the dynamical quantum phase transition can occur in systems with two broken symmetry phases and the quench dynamics may be independent on equilibrium phase transitions.
We address the quantum-critical behavior of a two-dimensional itinerant ferromagnetic systems described by a spin-fermion model in which fermions interact with close to critical bosonic modes. We consider Heisenberg ferromagnets, Ising ferromagnets, and the Ising nematic transition. Mean-field theory close to the quantum critical point predicts a superconducting gap with spin-triplet symmetry for the ferromagnetic systems and a singlet gap for the nematic scenario. Studying fluctuations in this ordered phase using a nonlinear sigma model, we find that these fluctuations are not suppressed by any small parameter. As a result, we find that a superconducting quasi-long-range order is still possible in the Ising-like models but long-range order is destroyed in Heisenberg ferromagnets.
In symmetry protected topological (SPT) phases, the combination of symmetries and a bulk gap stabilizes protected modes at surfaces or at topological defects. Understanding the fate of these modes at a quantum critical point, when the protecting symm etries are on the verge of being broken, is an outstanding problem. This interplay of topology and criticality must incorporate both the bulk dynamics of critical points, often described by nontrivial conformal field theories, and SPT physics. Here, we study the simplest nontrivial setting - that of a 0+1 dimensional topological mode - a quantum spin - coupled to a 2+1D critical bulk. Using the large-$N$ technique we solve a series of models which, as a consequence of topology, demonstrate intermediate coupling fixed points. We compare our results to previous numerical simulations and find good agreement. We also point out intriguing connections to generalized Kondo problems and Sachdev-Ye-Kitaev (SYK) models. In particular, we show that a Luttinger theorem derived for the complex SYK models, that relates the charge density to particle-hole asymmetry, also holds in our setting. These results should help stimulate further analytical study of the interplay between SPT physics and quantum criticality.
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially resolved nonlinear response distinguishes interacting integrable systems from noninteracting ones, exemplifying this for the Lieb-Liniger gas. We give a prescription for computing finite-temperature Drude weights of arbitrary order, which is in excellent agreement with numerical evaluation of the third-order response of the XXZ spin chain. We identify intrinsically nonperturbative regimes of the nonlinear response of integrable systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا