ﻻ يوجد ملخص باللغة العربية
In a seminal series of papers from the 80s, Lubotzky, Phillips and Sarnak applied the Ramanujan-Petersson Conjecture for $GL_{2}$ (Delignes theorem), to a special family of arithmetic lattices, which act simply-transitively on the Bruhat-Tits trees associated with $SL_{2}(mathbb{Q}_{p})$. As a result, they obtained explicit Ramanujan Cayley graphs from $PSL_{2}left(mathbb{F}_{p}right)$, as well as optimal topological generators (Golden Gates) for the compact Lie group $PU(2)$. In higher dimension, the naive generalization of the Ramanujan Conjecture fails, due to the phenomenon of endoscopic lifts. In this paper we overcome this problem for $PU_{3}$ by constructing a family of arithmetic lattices which act simply-transitively on the Bruhat-Tits buildings associated with $SL_{3}(mathbb{Q}_{p})$ and $SU_{3}(mathbb{Q}_{p})$, while at the same time do not admit any representation which violates the Ramanujan Conjecture. This gives us Ramanujan complexes from $PSL_{3}(mathbb{F}_{p})$ and $PU_{3}left(mathbb{F}_{p}right)$, as well as golden gates for $PU(3)$.
To each of the symmetry groups of the Platonic solids we adjoin a carefully designed involution yielding topological generators of PU(2) which have optimal covering properties as well as efficient navigation. These are a consequence of optimal strong
Ramanujan graphs are graphs whose spectrum is bounded optimally. Such graphs have found numerous applications in combinatorics and computer science. In recent years, a high dimensional theory has emerged. In this paper these developments are surveyed
The total-variation cutoff phenomenon has been conjectured to hold for simple random walk on all transitive expanders. However, very little is actually known regarding this conjecture, and cutoff on sparse graphs in general. In this paper we establis
This paper is concerned with a class of partition functions $a(n)$ introduced by Radu and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg and Robins, and Radus algorithms, we present an algorithm to find
Using the $q$-Wilf--Zeilberger method and a $q$-analogue of a divergent Ramanujan-type supercongruence, we give several $q$-supercongruences modulo the fourth power of a cyclotomic polynomial. One of them is a $q$-analogue of a supercongruence recent