ﻻ يوجد ملخص باللغة العربية
This paper is concerned with a class of partition functions $a(n)$ introduced by Radu and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg and Robins, and Radus algorithms, we present an algorithm to find Ramanujan-type identities for $a(mn+t)$. While this algorithm is not guaranteed to succeed, it applies to many cases. For example, we deduce a witness identity for $p(11n+6)$ with integer coefficients. Our algorithm also leads to Ramanujan-type identities for the overpartition functions $overline{p}(5n+2)$ and $overline{p}(5n+3)$ and Andrews--Paules broken $2$-diamond partition functions $triangle_{2}(25n+14)$ and $triangle_{2}(25n+24)$. It can also be extended to derive Ramanujan-type identities on a more general class of partition functions. For example, it yields the Ramanujan-type identities on Andrews singular overpartition functions $overline{Q}_{3,1}(9n+3)$ and $ overline{Q}_{3,1}(9n+6)$ due to Shen, the $2$-dissection formulas of Ramanujan and the $8$-dissection formulas due to Hirschhorn.
Using the $q$-Wilf--Zeilberger method and a $q$-analogue of a divergent Ramanujan-type supercongruence, we give several $q$-supercongruences modulo the fourth power of a cyclotomic polynomial. One of them is a $q$-analogue of a supercongruence recent
Ramanujan graphs are graphs whose spectrum is bounded optimally. Such graphs have found numerous applications in combinatorics and computer science. In recent years, a high dimensional theory has emerged. In this paper these developments are surveyed
We prove that amongst all real quadratic fields and all spaces of Hilbert modular forms of full level and of weight $2$ or greater, the product of two Hecke eigenforms is not a Hecke eigenform except for finitely many real quadratic fields and finite
We give unified modular proofs to all of Gospers identities on the $q$-constant $Pi_q$. We also confirm Gospers observation that for any distinct positive integers $n_1,cdots,n_m$ with $mgeq 3$, $Pi_{q^{n_1}}$, $cdots$, $Pi_{q^{n_m}}$ satisfy a nonze
We give a new structural development of harmonic polynomials on Hamming space, and harmonic weight enumerators of binary linear codes, that parallels one approach to harmonic polynomials on Euclidean space and weighted theta functions of Euclidean la