ﻻ يوجد ملخص باللغة العربية
Ramanujan graphs are graphs whose spectrum is bounded optimally. Such graphs have found numerous applications in combinatorics and computer science. In recent years, a high dimensional theory has emerged. In this paper these developments are surveyed. After explaining their connection to the Ramanujan conjecture we will present some old and new results with an emphasis on random walks on these discrete objects and on the Euclidean spheres. The latter lead to golden gates which are of importance in quantum computation.
In a seminal series of papers from the 80s, Lubotzky, Phillips and Sarnak applied the Ramanujan-Petersson Conjecture for $GL_{2}$ (Delignes theorem), to a special family of arithmetic lattices, which act simply-transitively on the Bruhat-Tits trees a
The cutoff phenomenon was recently confirmed for random walks on Ramanujan graphs by the first author and Peres. In this work, we obtain analogs in higher dimensions, for random walk operators on any Ramanujan complex associated with a simple group $
The total-variation cutoff phenomenon has been conjectured to hold for simple random walk on all transitive expanders. However, very little is actually known regarding this conjecture, and cutoff on sparse graphs in general. In this paper we establis
This paper is concerned with a class of partition functions $a(n)$ introduced by Radu and defined in terms of eta-quotients. By utilizing the transformation laws of Newman, Schoeneberg and Robins, and Radus algorithms, we present an algorithm to find
Ramanujan complexes are high dimensional simplical complexes generalizing Ramanujan graphs. A result of Oh on quantitative property (T) for Lie groups over local fields is used to deduce a Mixing Lemma for such complexes. As an application we prove t