ﻻ يوجد ملخص باللغة العربية
To each of the symmetry groups of the Platonic solids we adjoin a carefully designed involution yielding topological generators of PU(2) which have optimal covering properties as well as efficient navigation. These are a consequence of optimal strong approximation for integral quadratic forms associated with certain special quaternion algebras and their arithmetic groups. The generators give super efficient 1-qubit quantum gates and are natural building blocks for the design of universal quantum gates.
In a seminal series of papers from the 80s, Lubotzky, Phillips and Sarnak applied the Ramanujan-Petersson Conjecture for $GL_{2}$ (Delignes theorem), to a special family of arithmetic lattices, which act simply-transitively on the Bruhat-Tits trees a
Let $G$ be a connected, absolutely almost simple, algebraic group defined over a finitely generated, infinite field $K$, and let $Gamma$ be a Zariski dense subgroup of $G(K)$. We show, apart from some few exceptions, that the commensurability class o
We establish an analogue of the classical Polya-Vinogradov inequality for $GL(2, F_p)$, where $p$ is a prime. In the process, we compute the `singular Gauss sums for $GL(2, F_p)$. As an application, we show that the collection of elements in $GL(2,Z)
For a hyperbolic surface embedded eigenvalues of the Laplace operator are unstable and tend to become resonances. A sufficient dissolving condition was identified by Phillips-Sarnak and is elegantly expressed in Fermis Golden Rule. We prove formulas
We show that an approximate lattice in a nilpotent Lie group admits a relatively dense subset of central $(1-epsilon)$-Bragg peaks for every $epsilon > 0$. For the Heisenberg group we deduce that the union of horizontal and vertical $(1-epsilon)$-Bra