ترغب بنشر مسار تعليمي؟ اضغط هنا

Why it is so hard to detect Luttinger liquids in ARPES?

267   0   0.0 ( 0 )
 نشر من قبل Piotr Chudzinski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Chudzinski




اسأل ChatGPT حول البحث

The problem of photoemission from a quasi-1D material is studied. We identify two issues that play a key role in the detection of gapless Tomonaga-Luttinger liquid (TLL) phase. Firstly, we show how a disorder -- backward scattering as well as forward scattering component, is able to significantly obscure the TLL states, hence the initial state of ARPES. Secondly, we investigate the photo-electron propagation towards a samples surface. We focus on the scattering path operator contribution to the final state of ARPES. We show that, in the particular conditions set by the 1D states, one can derive exact analytic solution for this intermediate stage of ARPES. The solution shows that for particular energies of incoming photons the intensity of photo-current may be substantially reduced. Finally, we put together the two aspects (the disorder and the scattering path operator) to show the full, disruptive force of any inhomogeneities on the ARPES amplitude.



قيم البحث

اقرأ أيضاً

198 - Z. S. Lim , L. E. Chow , P. Yang 2021
Using SrRuO3-based thin film heterostructures, we aim to resolve the two debated interpretations that distinguish between the genuine Topological Hall Effect (THE) and the artefactual humps produced from overlapping double Karplus-Luttinger Anomalous Hall Effects (KL-AHE), without magnetic imaging. Firstly, we selected two heterostructures with similar Hall Effect but with contrasting octahedral rotations/tilts, providing a clue to determining the presence/absence of Dzyaloshinskii-Moriya Interaction. Secondly, we employ the {theta}-rotation of magnetic field from out-of-plane to in-plane as the critical judgemental tool. The first heterostructure showing field-position of Hall hump diverging with ~1/cos({theta}) is correctly reproduced using the double KL-AHEs. Yet, the second one showing constant hump field versus {theta} behaviour agrees with a micromagnetic simulation with Neel-Skyrmions and is thus convincingly assigned as THE. Lastly, for a general system evolving with increasing magnetic field from two-dimensional Skyrmion-lattice into collinear ferromagnetic in the real-space, we further discuss about the corresponding evolution of k-space band structure from gapped massive Dirac Fermion into Weyl Fermion, consistent to past literatures. Its associated transformation from Mirror Anomaly into Chiral Anomaly is detectable via electrical transport and further assisted in resolving the aforementioned debate. We hence emphasize the two schemes as useful, generic electrical measurement protocols for future search of magnetic Skyrmions.
113 - P.Chudzinski 2020
Topological insulators are frequently also one of the best known thermoelectric materials. It has been recently discovered that in 3D topological insulators each skew dislocation can host a pair of 1D topological states a helical TLL. We derive exact analytical formulas for thermoelectric Seebeck coefficient in TLL and investigate up to what extent one can ascribe the outstanding thermoelectric properties of Bi 2 Te 3 to these 1D topological states. To this end we take a model of a dense dislocation network and find an analytic formula for an overlap between 1D (the TLL) and 3D electronic states. Our study is applicable to a weakly n-doped Bi 2 Te 3 but also to a broader class of nano-structured materials with artificially created 1D systems. Furthermore, our results can be used at finite frequency settings e.g. to capture transport activated by photo-excitations.
We demonstrate that the plasmon in one-dimensional Coulomb interacting electron fluids can develop a finite-momentum maxon-roton-like nonmonotonic energy-momentum dispersion. Such an unusual nonmonotonicity arises from the strongly interacting $1/r$ Coulomb potential going beyond the conventional band linearization approximation used in the standard bosonization theories of Luttinger liquids. We provide details for the nonmonotonic plasmon dispersion using both bosonization and RPA theories. We also calculate the specific heat including the nonmonotonicity and discuss possibilities for observing the nonmonotonic plasmon dispersion in various physical systems including semiconductor quantum wires, carbon nanotubes, and the twisted bilayer graphene at sub-degree twist angles, which naturally realize one-dimensional domain-wall states.
343 - S. Grap , V. Meden 2009
We use Wilsons weak coupling ``momentum shell renormalization group method to show that two-particle interaction terms commonly neglected in bosonization of one-dimensional correlated electron systems with open boundaries are indeed irrelevant in the renormalization group sense. Our study provides a more solid ground for many investigations of Luttinger liquids with open boundaries.
Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, descri bing how the quantized thermal Hall conductivity of the gapped state changes to an unquantized thermal Hall conductivity in the gapless spinon Fermi surface state. We consider two cases, both of potential experimental interest: the state with non-Abelian Ising topological order on the honeycomb lattice, and the state with Abelian chiral spin liquid topological order on the triangular lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا