ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossover from Karplus-Luttinger to Topological Hall Effects in SrRuO3-based heterostructures

199   0   0.0 ( 0 )
 نشر من قبل Zhi Shiuh Lim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using SrRuO3-based thin film heterostructures, we aim to resolve the two debated interpretations that distinguish between the genuine Topological Hall Effect (THE) and the artefactual humps produced from overlapping double Karplus-Luttinger Anomalous Hall Effects (KL-AHE), without magnetic imaging. Firstly, we selected two heterostructures with similar Hall Effect but with contrasting octahedral rotations/tilts, providing a clue to determining the presence/absence of Dzyaloshinskii-Moriya Interaction. Secondly, we employ the {theta}-rotation of magnetic field from out-of-plane to in-plane as the critical judgemental tool. The first heterostructure showing field-position of Hall hump diverging with ~1/cos({theta}) is correctly reproduced using the double KL-AHEs. Yet, the second one showing constant hump field versus {theta} behaviour agrees with a micromagnetic simulation with Neel-Skyrmions and is thus convincingly assigned as THE. Lastly, for a general system evolving with increasing magnetic field from two-dimensional Skyrmion-lattice into collinear ferromagnetic in the real-space, we further discuss about the corresponding evolution of k-space band structure from gapped massive Dirac Fermion into Weyl Fermion, consistent to past literatures. Its associated transformation from Mirror Anomaly into Chiral Anomaly is detectable via electrical transport and further assisted in resolving the aforementioned debate. We hence emphasize the two schemes as useful, generic electrical measurement protocols for future search of magnetic Skyrmions.



قيم البحث

اقرأ أيضاً

The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here, we investigate the recently discovered AHE in the chiral antiferromagnet Mn3Sn by measuring a thermal analog of the AHE, known as an anomalous thermal Hall effect (ATHE). The amplitude of the ATHE scales with the anomalous Hall conductivity of Mn3Sn over a wide temperature range, demonstrating that the AHE of Mn3Sn arises from a dissipationless intrinsic mechanism associated with the Berry curvature. Moreover, we find that the dissipationless AHE is significantly stabilized by shifting the Fermi level toward the magnetic Weyl points. Thus, in Mn3Sn, the Berry curvature emerging from the proposed magnetic Weyl fermion state is a key factor for the observed AHE and ATHE.
266 - P. Chudzinski 2018
The problem of photoemission from a quasi-1D material is studied. We identify two issues that play a key role in the detection of gapless Tomonaga-Luttinger liquid (TLL) phase. Firstly, we show how a disorder -- backward scattering as well as forward scattering component, is able to significantly obscure the TLL states, hence the initial state of ARPES. Secondly, we investigate the photo-electron propagation towards a samples surface. We focus on the scattering path operator contribution to the final state of ARPES. We show that, in the particular conditions set by the 1D states, one can derive exact analytic solution for this intermediate stage of ARPES. The solution shows that for particular energies of incoming photons the intensity of photo-current may be substantially reduced. Finally, we put together the two aspects (the disorder and the scattering path operator) to show the full, disruptive force of any inhomogeneities on the ARPES amplitude.
106 - J. Matsuno , N. Ogawa , K. Yasuda 2016
Electron transport coupled with magnetism has attracted attention over the years as exemplified in anomalous Hall effect due to a Berry phase in momentum space. Another type of unconventional Hall effect -- topological Hall effect, originating from t he real-space Berry phase, has recently become of great importance in the context of magnetic skyrmions. We have observed topological Hall effect in bilayers consisting of ferromagnetic SrRuO$_3$ and paramagnetic SrIrO$_3$ over a wide region of both temperature and magnetic field. The topological term rapidly decreases with the thickness of SrRuO$_3$, ending up with the complete disappearance at 7 unit cells of SrRuO$_3$. Combined with model calculation, we concluded that the topological Hall effect is driven by interface Dzyaloshinskii-Moriya interaction, which is caused by both the broken inversion symmetry and the strong spin-orbit coupling of SrIrO$_3$. Such interaction is expected to realize the N{e}el-type magnetic skyrmion, of which size is estimated to be $sim$10 nm from the magnitude of topological Hall resistivity. The results established that the high-quality oxide interface enables us to tune the chirality of the system; this can be a step towards the future topological electronics.
This review provides a summary of the rich physics expressed within SrTiO$_3$-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., sem iconductor nanostructures). After reviewing the relevant properties of SrTiO$_3$ itself, we will then discuss the basics of SrTiO$_3$-based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.
Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anom aly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temperature and binding energy, which differs from Fermi-Liquid behavior. Most intriguingly, we observe that the hybridization between the d and f states builds gradually over a wide temperature region (30 K < T < 110 K). The surface states appear when the hybridization starts to develop. Our detailed temperature-dependence results give a complete interpretation of the exotic resistivity result of SmB6, as well as the discrepancies among experimental results concerning the temperature regions in which the topological surface states emerge and the Kondo gap opens, and give new insights into the exotic Kondo crossover and its relationship with the topological surface states in the topological Kondo insulator SmB6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا